Initial-boundary value problems for the Vlasov-Poisson equations in a half-space

被引:0
作者
A. L. Skubachevskii
机构
[1] Peoples’ Friendship University of Russia,
来源
Proceedings of the Steklov Institute of Mathematics | 2013年 / 283卷
关键词
Weak Solution; Bounded Domain; STEKLOV Institute; Classical Solution; Poisson Equation;
D O I
暂无
中图分类号
学科分类号
摘要
We consider initial-boundary value problems for the Vlasov-Poisson equations in a half-space that describe evolution of densities for ions and electrons in a rarefied plasma. For sufficiently small initial densities with compact supports and large strength of an external magnetic field, we prove the existence and uniqueness of classical solutions for initial-boundary value problems with different boundary conditions for the electric potential: the Dirichlet conditions, the Neumann conditions, and nonlocal conditions.
引用
收藏
页码:197 / 225
页数:28
相关论文
共 37 条
  • [1] Iordanskii S V(1961)The Cauchy problem for the kinetic equation of plasma Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 60 181-194
  • [2] Braun W(1977)The Vlasov dynamics and its fluctuations in the 1/ Commun. Math. Phys. 56 101-113
  • [3] Hepp K(1979) limit of interacting classical particles Funkts. Anal. Prilozh. 13 48-58
  • [4] Dobrushin R L(1975)Vlasov equations Zh. Vychisl. Mat. Mat. Phys. 15 136-147
  • [5] Arsen’ev A A(1988)Global existence of a weak solution of Vlasov’s system of equations C. R. Acad. Sci. Paris, Sér. 1 307 655-658
  • [6] DiPerna R(1989)Solutions globales d’équations du type Vlasov-Poisson Commun. Pure Appl. Math. 42 729-757
  • [7] Lions P L(1963)Global weak solutions of Vlasov-Maxwell systems Arch. Ration. Mech. Anal. 13 296-308
  • [8] DiPerna R J(1977)Ein Existenzbeweis für die Vlasov-Gleichung der Stellardynamik bei gemittelter Dichte J. Diff. Eqns. 25 342-364
  • [9] Lions P L(1991)Global symmetric solutions of the initial value problem of stellar dynamics C. R. Acad. Sci. Paris, Sér. 1 313 411-416
  • [10] Batt J(1985)Global classical solutions of the periodic Vlasov-Poisson system in three dimensions Ann. Inst. Henri Poincaré, Anal. Non Linéaire 2 101-118