The full group of automorphisms of non-orientable unbordered Klein surfaces of topological genus 7

被引:0
作者
Adrián Bacelo
机构
[1] Universidad Complutense,Departamento de Álgebra, Facultad de Matemáticas
来源
Revista Matemática Complutense | 2018年 / 31卷
关键词
Symmetric crosscap number; Klein surfaces; Full group of automorphism; Primary 57M60; Secondary 20F05; 20H10; 30F50;
D O I
暂无
中图分类号
学科分类号
摘要
To determine the full automorphism group of compact Riemann and Klein surfaces is a hard problem, although some partial results are known. For example, the automorphisms groups of hyperelliptic surfaces, and those of (compact, non-orientable, unbordered) Klein surfaces whose genus is less or equal to 6 are known. In this paper the full automorphism groups of the surfaces of genus 7 are calculated.
引用
收藏
页码:247 / 261
页数:14
相关论文
共 21 条
  • [1] Bujalance E(1982)Normal NEC signatures Ill. J. Math. 26 519-530
  • [2] Bujalance E(1983)Cyclic groups of automorphisms of compact non-orientable Klein surfaces without boundary Pac. J. Math. 109 279-289
  • [3] Bujalance E(2013)Extensions of finite cyclic groups actions on non-orientable surfaces Trans. Am. Math. Soc 365 4209-4227
  • [4] Cirre FJ(2014)The full group of automorphisms of non-orientable unbordered Klein surfaces of topological genus 3, 4 and 5 Rev. Mat. Complut. 27 305-326
  • [5] Conder MDE(2001)Determination of all regular maps of small genus J. Comb. Theory Ser. B 81 224-242
  • [6] Bujalance E(2006)Non-normal pairs of non-Euclidean crystallographic groups Bull. Lond. Math. Soc. 38 113-123
  • [7] Etayo JJ(2013)The symmetric crosscap number of the groups of small-order J. Algebra Appl. 12 1250164-1205
  • [8] Martínez E(1991)Compact Klein surfaces with boundary viewed as real compact smooth algebraic curves Mem. Real Acad. Cienc. Exact. Fís. Nat. Madr. 27 iv+96-410
  • [9] Conder M(1967)The classification of non-Euclidean crystallographic groups Can. J. Math. 19 1192-4095
  • [10] Dobcsányi P(2001)The symmetric crosscap number of a group Glasg. Math. J. 41 399-59