On Lefschetz periodic point free self-maps

被引:0
作者
Jaume Llibre
Víctor F. Sirvent
机构
[1] Universitat Autònoma de Barcelona,Departament de Matemàtiques
[2] Universidad Simón Bolívar,Departamento de Matemáticas
来源
Journal of Fixed Point Theory and Applications | 2018年 / 20卷
关键词
Periodic point; Lefschetz zeta function; Lefschetz numbers; wedge sum of spheres; product of spheres; 37C25; 37C30; 37E15;
D O I
暂无
中图分类号
学科分类号
摘要
We study the periodic point free maps and Lefschetz periodic point free maps on connected retract of a finite simplicial complex using the Lefschetz numbers. We put special emphasis in the self-maps on the product of spheres and of the wedge sums of spheres.
引用
收藏
相关论文
共 22 条
  • [1] Alsedà Ll(1993)Torus maps and Nielsen numbers Contemp. Math. 152 1-7
  • [2] Baldwin S(1975)Nielsen numbers of maps of tori Proc. Am. Math. Soc. 52 398-400
  • [3] Llibre J(2012)Lefschetz periodic point free self-maps of compact manifolds, Topol. Appl. 159 2728-2735
  • [4] Swanson R(2011)On the Lefschetz periodic point free continuous self-maps on connected compact manifolds Topol. Appl. 158 2165-2169
  • [5] Szlenk W(1998)Minimal sets of periods for torus maps Discret. Contin. Dyn. Syst. 4 301-320
  • [6] Brooks RB(2016)A sufficient condition for the realizability of the least number of periodic points of a smooth map J. Fixed Point Theory Appl. 18 609-626
  • [7] Brown RF(1926)Intersections and transformations of complexes and manifolds Trans. Am. Math. Soc. 28 1-49
  • [8] Pak J(2012)Periodic point free continuous self-maps on graphs and surfaces Topol. Appl. 159 2228-2231
  • [9] Taylor D(2013)Partially periodic point free self-maps on surfaces, graphs, wedge sums and product of spheres J. Differ. Equ. Appl. 19 1654-1662
  • [10] Graff G(undefined)undefined undefined undefined undefined-undefined