Glueball production via gluonic penguin B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document} decays

被引:0
作者
Xiao-Gang He
Tzu-Chiang Yuan
机构
[1] INPAC,Department of Physics
[2] SKLPPC,Department of Physics
[3] Shanghai Jiao Tong University,Institute of Physics
[4] National Center for Theoretical Sciences and Physics Department of National Tsing Hua University,undefined
[5] National Taiwan University,undefined
[6] Academia Sinica,undefined
来源
The European Physical Journal C | 2015年 / 75卷 / 3期
关键词
Pseudoscalar Meson; Effective Coupling; Hadronic Matrix Element; Glueball Mass; Tensor State;
D O I
10.1140/epjc/s10052-015-3354-4
中图分类号
学科分类号
摘要
We study glueball G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} production in gluonic penguin decay B→G+Xs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\rightarrow G + X_s$$\end{document}, using the next-to-leading order b→sg∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\rightarrow s g^*$$\end{document} gluonic penguin interaction and effective couplings of a glueball to two perturbative gluons. Subsequent decays of a scalar glueball are described by using techniques of effective chiral Lagrangians to incorporate the interaction between a glueball and pseudoscalar mesons. Mixing effects between the pure glueball with other mesons are considered. Identifying the f0(1710)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_0(1710)$$\end{document} as a scalar glueball, we find that both the top and the charm penguin are important and obtain a sizable branching ratio for B→f0(1710)+Xs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\rightarrow f_0(1710) + X_s$$\end{document} of order 1.3×10-4(f/0.07GeV-1)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.3\times 10^{-4}(f/0.07\,\text{ GeV }^{-1})^2$$\end{document}, where the effective coupling strength f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} is estimated to be 0.07\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.07$$\end{document} GeV-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document} using experimental data for the branching ratio of f0(1710)→KK¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_0(1710) \rightarrow K \overline{K}$$\end{document} based on a chiral Lagrangian estimate. An alternative perturbative QCD based estimation of f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} is a factor of 20 larger, which would imply a much enhanced branching ratio. Glueball production from this rare semi-inclusive B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document} decay can be probed at the LHCb and Belle II to narrow down the allowed parameter space. A similar branching ratio is expected for the pseudoscalar glueball. We also briefly comment on the case of vector and tensor glueballs.
引用
收藏
相关论文
共 54 条
  • [1] Chen Y(2006)undefined Phys. Rev. D 73 014516-undefined
  • [2] Alexandru A(2012)undefined JHEP 1210 170-undefined
  • [3] Dong SJ(1999)undefined Phys. Rev. D 61 014015-undefined
  • [4] Draper T(1998)undefined Phys. Rev. D 59 014022-undefined
  • [5] Horvath I(2005)undefined Phys. Rev. D 72 094006-undefined
  • [6] Lee FX(2005)undefined Phys. Rev. D 71 094022-undefined
  • [7] Liu KF(2009)undefined Int. J. Mod. Phys. A 24 3392-undefined
  • [8] Mathur N(1980)undefined Nucl. Phys. B 165 67-undefined
  • [9] Morningstar C(2002)undefined Phys. Rev. D 66 074015-undefined
  • [10] Peardon M(2003)undefined Phys. Rev. Lett. 91 112001-undefined