Enumeration of quarter-turn-symmetric alternating-sign matrices of odd order

被引:0
作者
A. V. Razumov
Yu. G. Stroganov
机构
[1] Institute for High Energy Physics,
来源
Theoretical and Mathematical Physics | 2006年 / 149卷
关键词
alternating-sign matrix; enumeration; square-ice model;
D O I
暂无
中图分类号
学科分类号
摘要
Kuperberg showed that the partition function of the square-ice model related to quarter-turn-symmetric alternating-sign matrices of even order is the product of two similar factors. We propose a square-ice model whose states are in bijection with the quarter-turn-symmetric alternating-sign matrices of odd order and show that the partition function of this model can be written similarly. In particular, this allows proving Robbins’s conjectures related to the enumeration of quarter-turn-symmetric alternating-sign matrices.
引用
收藏
页码:1639 / 1650
页数:11
相关论文
共 10 条
[1]  
Mills W. H.(1982)undefined Invent. Math. 66 73-87
[2]  
Robbins D. P.(1996)undefined Internat. Math. Res. Notes 3 139-150
[3]  
Rumsey H.(2002)undefined Ann. Math. 156 835-866
[4]  
Kuperberg G.(2006)undefined Theor. Math. Phys. 148 1174-1198
[5]  
Kuperberg G.(1996)undefined New York J. Math. 2 59-68
[6]  
Razumov A. V.(2006)undefined Theor. Math. Phys. 146 53-62
[7]  
Stroganov Yu. G.(2006)undefined J. Algebraic Combin. 23 43-69
[8]  
Zeilberger D.(undefined)undefined undefined undefined undefined-undefined
[9]  
Stroganov Yu. G.(undefined)undefined undefined undefined undefined-undefined
[10]  
Okada S.(undefined)undefined undefined undefined undefined-undefined