On a class of permutation rational functions involving trace maps

被引:0
作者
Ruikai Chen
Sihem Mesnager
机构
[1] University of Paris VIII,Department of Mathematics
[2] University Sorbonne Paris Nord,Laboratory Analysis, Geometry and Applications, LAGA
[3] CNRS,undefined
[4] UMR 7539,undefined
[5] Telecom Paris,undefined
[6] Polytechnic Institute of Paris,undefined
来源
Designs, Codes and Cryptography | 2024年 / 92卷
关键词
Finite field; Extension field; Polynomial; Permutation; Rational function; 11T06; 14H05;
D O I
暂无
中图分类号
学科分类号
摘要
Permutation rational functions over finite fields have attracted high interest in recent years. However, only a few of them have been exhibited. This article studies a class of permutation rational functions constructed using trace maps on extensions of finite fields, especially for the cases of quadratic and cubic extensions. Our achievements are obtained by investigating absolute irreducibility of some polynomials in two indeterminates.
引用
收藏
页码:1327 / 1339
页数:12
相关论文
共 16 条
[1]  
Bartoli D(2021)On a conjecture on permutation rational functions over finite fields Finite Fields Appl. 76 187-193
[2]  
Hou X-D(2003)New Kloosterman sums identities over Finite Fields Appl. 9 16-23
[3]  
Helleseth T(2020) for all Finite Fields Appl. 68 88-103
[4]  
Zinoviev V(2013)On a type of permutation rational functions over finite fields Finite Fields Appl. 22 36-51
[5]  
Hou X-D(2014)Further results on a class of permutation polynomials over finite fields Finite Fields Appl. 27 781-790
[6]  
Sze C(2015)Further results on permutation polynomials over finite fields Finite Fields Appl. 35 undefined-undefined
[7]  
Li N(2012)Permutation polynomials from trace functions over finite fields Finite Fields Appl. 18 undefined-undefined
[8]  
Helleseth T(undefined)Two classes of permutation polynomials over finite fields undefined undefined undefined-undefined
[9]  
Tang X(undefined)undefined undefined undefined undefined-undefined
[10]  
Yuan P(undefined)undefined undefined undefined undefined-undefined