On the extension of Calabi flow on toric varieties

被引:0
作者
Hongnian Huang
机构
[1] Université du Quebec a Montreal,Centre interuniversitaire de recherches en geometri et topologie
来源
Annals of Global Analysis and Geometry | 2011年 / 40卷
关键词
Calabi flow; Toric variety; Long time existence; 53C44; 53C55;
D O I
暂无
中图分类号
学科分类号
摘要
Inspired by recent study of Donaldson on constant scalar curvature metrics on toric complex surfaces, we study obstructions to the extension of the Calabi flow on a polarized toric variety. Under some technical assumptions, we prove that the Calabi flow can be extended for all time.
引用
收藏
页码:1 / 19
页数:18
相关论文
共 18 条
[1]  
Abreu M.(1998)Kähler geometry of toric varieties and extremal metrics Int. J. Math. 9 641-651
[2]  
Abreu M.(2001)Kähler metrics on toric orbifolds J. Differ. Geom. 58 151-187
[3]  
Apostolov V.(2006)Hamiltonian 2-forms in Kaehler geometry I: general theory J. Differ. Geom. 73 359-412
[4]  
Calderbank D.(2001)Calabi flow in Riemann surfaces revisited IMRN 6 275-297
[5]  
Gauduchon P.(2008)On the Calabi flow Am. J. Math. 130 539-570
[6]  
Chen X.X.(1991)Semi-global existence and convergence of solutions of the Robison–Trautman (2-dimensional Calabi) equation Commun. Math. Phys. 137 289-313
[7]  
Chen X.X.(2002)Scalar curvature and stability of toric varieties J. Differ. Geom. 62 289-349
[8]  
He W.Y.(2005)Interior estimates for solutions of Abreus equation Collectanea Math. 56 103-142
[9]  
Chrusciél P.T.(2008)Extremal metrics on toric surfaces: a continuity method J. Differ. Geom. 79 389-432
[10]  
Donaldson S.K.(2009)Constant scalar curvature metrics on toric surfaces Geom. Funct. Anal. 19 83-136