Generalized incomplete poly-Bernoulli and poly-Cauchy numbers

被引:0
作者
Takao Komatsu
机构
[1] Wuhan University,School of Mathematics and Statistics
来源
Periodica Mathematica Hungarica | 2017年 / 75卷
关键词
poly-Bernoulli numbers; poly-Cauchy numbers; associated Stirling numbers; restricted Stirling numbers; incomplete poly-Bernoulli numbers; incomplete poly-Cauhy numbers;
D O I
暂无
中图分类号
学科分类号
摘要
By using the restricted and associated Stirling numbers of the first kind and by generalizing the (unsigned) Stirling numbers of the first kind, we define the generalized incomplete poly-Cauchy numbers by combining the generalized and the incomplete poly-Cauchy numbers, and study their arithmetical and combinatorial properties. We also study the corresponding generalized incomplete poly-Bernoulli numbers.
引用
收藏
页码:96 / 113
页数:17
相关论文
共 13 条
[1]  
Cenkci M(2015)Poly-Bernoulli numbers and polynomials with a J. Number Theory 152 38-54
[2]  
Komatsu T(1980) parameter Fibonacci Quart. 18 303-315
[3]  
Howard FT(1997)Associated Stirling numbers J. Th. Nombres Bordeaux 9 221-228
[4]  
Kaneko M(2013)Poly-Bernoulli numbers Kyushu J. Math. 67 143-153
[5]  
Komatsu T(2013)Poly-Cauchy numbers Ramanujan J. 31 353-371
[6]  
Komatsu T(2013)Poly-Cauchy numbers with a Int. J. Number Theory 9 545-560
[7]  
Komatsu T(2014) parameter Lith. Math. J. 54 166-181
[8]  
Komatsu T(2006)Hypergeometric Cauchy numbers Discret. Math. 306 1906-1920
[9]  
Szalay L(2012)Shifted poly-Cauchy numbers J. Number Theory 132 156-170
[10]  
Merlini D(undefined)The Cauchy numbers undefined undefined undefined-undefined