Investigation of ionization chamber perturbation factors using proton beam and Fano cavity test for the Monte Carlo simulation code PHITS

被引:0
作者
Yuya Nagake
Keisuke Yasui
Hiromu Ooe
Masaya Ichihara
Kaito Iwase
Toshiyuki Toshito
Naoki Hayashi
机构
[1] Fujita Health University,Graduate School of Health Sciences
[2] Fujita Health University,School of Medical Sciences
[3] Narita Memorial Proton Center,Nagoya Proton Therapy Center
[4] Nagoya City University West Medical Center,undefined
来源
Radiological Physics and Technology | 2024年 / 17卷
关键词
Proton dosimetry; Ionization chamber; Monte Carlo simulation; PHITS; Fano test;
D O I
暂无
中图分类号
学科分类号
摘要
The reference dose for clinical proton beam therapy is based on ionization chamber dosimetry. However, data on uncertainties in proton dosimetry are lacking, and multifaceted studies are required. Monte Carlo simulations are useful tools for calculating ionization chamber dosimetry in radiation fields and are sensitive to the transport algorithm parameters when particles are transported in a heterogeneous region. We aimed to evaluate the proton transport algorithm of the Particle and Heavy Ion Transport Code System (PHITS) using the Fano test. The response of the ionization chamber fQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{{\text{Q}}}$$\end{document} and beam quality correction factors kQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k}_{{\text{Q}}}$$\end{document} were calculated using the same parameters as those in the Fano test and compared with those of other Monte Carlo codes for verification. The geometry of the Fano test consisted of a cylindrical gas-filled cavity sandwiched between two cylindrical walls. fQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{{\text{Q}}}$$\end{document} was calculated as the ratio of the absorbed dose in water to the dose in the cavity in the chamber. We compared the fQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{{\text{Q}}}$$\end{document} calculated using PHITS with that of a previous study, which was calculated using other Monte Carlo codes (Geant4, FULKA, and PENH) under similar conditions. The flight mesh, a parameter for charged particle transport, passed the Fano test within 0.15%. This was shown to be sufficiently accurate compared with that observed in previous studies. The fQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{{\text{Q}}}$$\end{document} calculated using PHITS were 1.116 ± 0.002 and 1.124 ± 0.003 for NACP-02 and PTW-30013, respectively, and the kQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k}_{{\text{Q}}}$$\end{document} were 0.981 ± 0.008 and 1.027 ± 0.008, respectively, at 150 MeV. Our results indicate that PHITS can calculate the fQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{{\text{Q}}}$$\end{document} and kQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k}_{{\text{Q}}}$$\end{document} with high precision.
引用
收藏
页码:280 / 287
页数:7
相关论文
共 270 条
[31]  
Michael Burg J(2019)A theory of cavity ionization Med Phys 46 undefined-undefined
[32]  
Engenhart-Cabillic R(undefined)Comparison of PENH, FLUKA, and Geant4/TOPAS for absorbed dose calculations in air cavities representing ionization chambers in high-energy photon and proton beams undefined undefined undefined-undefined
[33]  
Zink K(undefined)undefined undefined undefined undefined-undefined
[34]  
Salvat F(undefined)undefined undefined undefined undefined-undefined
[35]  
Allison J(undefined)undefined undefined undefined undefined-undefined
[36]  
Amako K(undefined)undefined undefined undefined undefined-undefined
[37]  
Apostolakis J(undefined)undefined undefined undefined undefined-undefined
[38]  
Arce P(undefined)undefined undefined undefined undefined-undefined
[39]  
Asai M(undefined)undefined undefined undefined undefined-undefined
[40]  
Aso T(undefined)undefined undefined undefined undefined-undefined