On Nonlocal Choquard System with Hardy–Littlewood–Sobolev Critical Exponents

被引:0
作者
Xiaorong Luo
Anmin Mao
Shuai Mo
机构
[1] Qufu Normal University,School of Mathematical Sciences
[2] Nankai University,School of Mathematical Sciences and LPMC
来源
The Journal of Geometric Analysis | 2022年 / 32卷
关键词
Choquard system; Upper critical exponent; Star-shaped domain; Variational method; 35J05; 35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
Standing wave solutions of the following Hartree system with nonlocal interaction and critical exponent are considered: -(a+b∫Ω|∇u|2)Δu=h(x)∫Ω|v(y)|2μ∗|x-y|μdy|u|2μ∗-2u+fλ(x)|u|q-2u,inΩ,-(a+b∫Ω|∇v|2)Δv=h(x)∫Ω|u(y)|2μ∗|x-y|μdy|v|2μ∗-2v+gσ(x)|v|q-2v,inΩ,u,v≥0,inΩ,u,v=0,on∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{lllll} &{}-(a+b\displaystyle \int _{\Omega }|\nabla u|^2)\Delta u=h(x)\left( \displaystyle \int _{\Omega }\frac{|v(y)|^{2^*_\mu }}{|x-y|^\mu }\mathrm{{d}}y\right) |u|^{2^*_\mu -2}u\\ &{} \qquad \qquad \qquad \qquad \qquad \qquad \qquad + f_\lambda (x)|u|^{q-2}u,\quad in\,\Omega ,\\ &{}-(a+b\displaystyle \int _{\Omega }|\nabla v|^2)\Delta v=h(x)\left( \displaystyle \int _{\Omega }\frac{|u(y)|^{2^*_\mu }}{|x-y|^\mu }\mathrm{{d}}y\right) |v|^{2^*_\mu -2}v\\ &{} \qquad \qquad \qquad \qquad \qquad \qquad \qquad + g_\sigma (x)|v|^{q-2}v,\quad in\,\Omega ,\\ &{} u,v\ge 0, \quad \ in\,\Omega ,\\ &{} u,v=0, \quad \ on\,\partial \Omega , \end{array} \right. \end{aligned}$$\end{document}where 1<q<2,2μ∗=2N-μN-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<q<2, 2^{*}_{\mu }=\frac{2N-\mu }{N-2}$$\end{document} is the upper critical exponent in the sense of the Hardy–Littlewood–Sobolev inequality. We study the effect of nonlocal interaction on the number of solutions in the case of general response function Ψ(x)=|x|-μ(0<μ<N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi (x)=|x|^{-\mu } (0<\mu <N)$$\end{document}, which possesses more information on the mutual interaction between the particles. When parameters pair (λ,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lambda , \sigma )$$\end{document} belongs to a certain subset of R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document}, we prove the existence, nonexistence and the limit behavior of the nonnegative vector solutions depending on parameters. In the special case of q=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=2$$\end{document}, existence of nonnegative solution is also established. Our work extends and develops some recent results in the literature.
引用
收藏
相关论文
共 50 条
[41]   Existence and multiplicity of solutions for a nonlocal problem with critical Sobolev exponent [J].
Liao, Jia-Feng ;
Li, Hong-Ying ;
Zhang, Peng .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (03) :787-797
[42]   Infinitely many solutions to elliptic systems with critical exponents and Hardy potentials [J].
Kang DongSheng ;
Peng ShuangJie .
SCIENCE CHINA-MATHEMATICS, 2012, 55 (10) :2027-2044
[43]   Infinitely many solutions to elliptic systems with critical exponents and Hardy potentials [J].
DongSheng Kang ;
ShuangJie Peng .
Science China Mathematics, 2012, 55 :2027-2044
[44]   Infinitely many solutions to elliptic systems with critical exponents and Hardy potentials [J].
KANG DongSheng PENG ShuangJie School of Mathematics and StatisticsSouthCentral University For NationalitiesWuhan ChinaSchool of Mathematics and StatisticsCentral China Normal UniversityWuhan China .
ScienceChina(Mathematics), 2012, 55 (10) :2027-2044
[45]   Quasilinear elliptic problems with combined critical Sobolev-Hardy terms [J].
Li, Yuanyuan ;
Ruf, Bernhard ;
Guo, Qianqiao ;
Niu, Pengcheng .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2013, 192 (01) :93-113
[46]   Semi-classical states for the Choquard equations with doubly critical exponents: Existence, multiplicity and concentration [J].
Su, Yu ;
Liu, Zhisu .
ASYMPTOTIC ANALYSIS, 2023, 132 (3-4) :451-493
[47]   MULTIPLICITY OF SOLUTIONS TO A NONLOCAL CHOQUARD EQUATION INVOLVING FRACTIONAL MAGNETIC OPERATORS AND CRITICAL EXPONENT [J].
Wang, Fuliang ;
Xiang, Mingqi .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
[48]   EXISTENCE OF SOLUTIONS FOR QUASILINEAR ELLIPTIC SYSTEMS INVOLVING CRITICAL EXPONENTS AND HARDY TERMS [J].
Lue, Dengfeng .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
[49]   A FRACTIONAL HARDY-SOBOLEV TYPE INEQUALITY WITH APPLICATIONS TO NONLINEAR ELLIPTIC EQUATIONS WITH CRITICAL EXPONENT AND HARDY POTENTIAL [J].
Shen, Yansheng .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (07) :1901-1937
[50]   Existence and multiplicity of positive solutions for a class of elliptic equations involving critical Sobolev exponents [J].
Jia-feng Liao ;
Jiu Liu ;
Peng Zhang ;
Chun-Lei Tang .
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2016, 110 :483-501