On Nonlocal Choquard System with Hardy–Littlewood–Sobolev Critical Exponents

被引:0
作者
Xiaorong Luo
Anmin Mao
Shuai Mo
机构
[1] Qufu Normal University,School of Mathematical Sciences
[2] Nankai University,School of Mathematical Sciences and LPMC
来源
The Journal of Geometric Analysis | 2022年 / 32卷
关键词
Choquard system; Upper critical exponent; Star-shaped domain; Variational method; 35J05; 35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
Standing wave solutions of the following Hartree system with nonlocal interaction and critical exponent are considered: -(a+b∫Ω|∇u|2)Δu=h(x)∫Ω|v(y)|2μ∗|x-y|μdy|u|2μ∗-2u+fλ(x)|u|q-2u,inΩ,-(a+b∫Ω|∇v|2)Δv=h(x)∫Ω|u(y)|2μ∗|x-y|μdy|v|2μ∗-2v+gσ(x)|v|q-2v,inΩ,u,v≥0,inΩ,u,v=0,on∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{lllll} &{}-(a+b\displaystyle \int _{\Omega }|\nabla u|^2)\Delta u=h(x)\left( \displaystyle \int _{\Omega }\frac{|v(y)|^{2^*_\mu }}{|x-y|^\mu }\mathrm{{d}}y\right) |u|^{2^*_\mu -2}u\\ &{} \qquad \qquad \qquad \qquad \qquad \qquad \qquad + f_\lambda (x)|u|^{q-2}u,\quad in\,\Omega ,\\ &{}-(a+b\displaystyle \int _{\Omega }|\nabla v|^2)\Delta v=h(x)\left( \displaystyle \int _{\Omega }\frac{|u(y)|^{2^*_\mu }}{|x-y|^\mu }\mathrm{{d}}y\right) |v|^{2^*_\mu -2}v\\ &{} \qquad \qquad \qquad \qquad \qquad \qquad \qquad + g_\sigma (x)|v|^{q-2}v,\quad in\,\Omega ,\\ &{} u,v\ge 0, \quad \ in\,\Omega ,\\ &{} u,v=0, \quad \ on\,\partial \Omega , \end{array} \right. \end{aligned}$$\end{document}where 1<q<2,2μ∗=2N-μN-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<q<2, 2^{*}_{\mu }=\frac{2N-\mu }{N-2}$$\end{document} is the upper critical exponent in the sense of the Hardy–Littlewood–Sobolev inequality. We study the effect of nonlocal interaction on the number of solutions in the case of general response function Ψ(x)=|x|-μ(0<μ<N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi (x)=|x|^{-\mu } (0<\mu <N)$$\end{document}, which possesses more information on the mutual interaction between the particles. When parameters pair (λ,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lambda , \sigma )$$\end{document} belongs to a certain subset of R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document}, we prove the existence, nonexistence and the limit behavior of the nonnegative vector solutions depending on parameters. In the special case of q=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=2$$\end{document}, existence of nonnegative solution is also established. Our work extends and develops some recent results in the literature.
引用
收藏
相关论文
共 50 条
[31]   EXISTENCE RESULTS FOR ELLIPTIC SYSTEMS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
Bouchekif, Mohammed ;
Nasri, Yasmina .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2004,
[32]   On the singular elliptic systems involving multiple critical Sobolev exponents [J].
Huang, Yan ;
Kang, Dongsheng .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (02) :400-412
[33]   QUASILINEAR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENTS AND HARDY TERMS IN RN [J].
Kang, Dongsheng .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2010, 53 :175-193
[34]   Quasilinear elliptic problems with combined critical Sobolev–Hardy terms [J].
Yuanyuan Li ;
Bernhard Ruf ;
Qianqiao Guo ;
Pengcheng Niu .
Annali di Matematica Pura ed Applicata, 2013, 192 :93-113
[35]   Positive ground states for nonlinearly coupled Choquard type equations with lower critical exponents [J].
Wu, Huiling .
BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
[36]   On a class of generalized Choquard system in fractional Orlicz-Sobolev spaces [J].
El-Houari, Hamza ;
Moussa, Hicham .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 540 (01)
[37]   Positive ground states for nonlinearly coupled Choquard type equations with lower critical exponents [J].
Huiling Wu .
Boundary Value Problems, 2021
[38]   Normalized solutions for Schrödinger equations with critical Sobolev exponent and perturbations of Choquard terms [J].
Jin, Peng ;
Yang, Heng ;
Zhou, Xin'ao .
BULLETIN OF MATHEMATICAL SCIENCES, 2025,
[39]   EXISTENCE RESULTS FOR DEGENERATE ELLIPTIC EQUATIONS WITH CRITICAL CONE SOBOLEV EXPONENTS [J].
范海宁 ;
刘晓春 .
Acta Mathematica Scientia, 2014, 34 (06) :1907-1921
[40]   EXISTENCE RESULTS FOR DEGENERATE ELLIPTIC EQUATIONS WITH CRITICAL CONE SOBOLEV EXPONENTS [J].
Fan, Haining ;
Liu, Xiaochun .
ACTA MATHEMATICA SCIENTIA, 2014, 34 (06) :1907-1921