On Nonlocal Choquard System with Hardy–Littlewood–Sobolev Critical Exponents

被引:0
作者
Xiaorong Luo
Anmin Mao
Shuai Mo
机构
[1] Qufu Normal University,School of Mathematical Sciences
[2] Nankai University,School of Mathematical Sciences and LPMC
来源
The Journal of Geometric Analysis | 2022年 / 32卷
关键词
Choquard system; Upper critical exponent; Star-shaped domain; Variational method; 35J05; 35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
Standing wave solutions of the following Hartree system with nonlocal interaction and critical exponent are considered: -(a+b∫Ω|∇u|2)Δu=h(x)∫Ω|v(y)|2μ∗|x-y|μdy|u|2μ∗-2u+fλ(x)|u|q-2u,inΩ,-(a+b∫Ω|∇v|2)Δv=h(x)∫Ω|u(y)|2μ∗|x-y|μdy|v|2μ∗-2v+gσ(x)|v|q-2v,inΩ,u,v≥0,inΩ,u,v=0,on∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{lllll} &{}-(a+b\displaystyle \int _{\Omega }|\nabla u|^2)\Delta u=h(x)\left( \displaystyle \int _{\Omega }\frac{|v(y)|^{2^*_\mu }}{|x-y|^\mu }\mathrm{{d}}y\right) |u|^{2^*_\mu -2}u\\ &{} \qquad \qquad \qquad \qquad \qquad \qquad \qquad + f_\lambda (x)|u|^{q-2}u,\quad in\,\Omega ,\\ &{}-(a+b\displaystyle \int _{\Omega }|\nabla v|^2)\Delta v=h(x)\left( \displaystyle \int _{\Omega }\frac{|u(y)|^{2^*_\mu }}{|x-y|^\mu }\mathrm{{d}}y\right) |v|^{2^*_\mu -2}v\\ &{} \qquad \qquad \qquad \qquad \qquad \qquad \qquad + g_\sigma (x)|v|^{q-2}v,\quad in\,\Omega ,\\ &{} u,v\ge 0, \quad \ in\,\Omega ,\\ &{} u,v=0, \quad \ on\,\partial \Omega , \end{array} \right. \end{aligned}$$\end{document}where 1<q<2,2μ∗=2N-μN-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<q<2, 2^{*}_{\mu }=\frac{2N-\mu }{N-2}$$\end{document} is the upper critical exponent in the sense of the Hardy–Littlewood–Sobolev inequality. We study the effect of nonlocal interaction on the number of solutions in the case of general response function Ψ(x)=|x|-μ(0<μ<N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi (x)=|x|^{-\mu } (0<\mu <N)$$\end{document}, which possesses more information on the mutual interaction between the particles. When parameters pair (λ,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lambda , \sigma )$$\end{document} belongs to a certain subset of R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document}, we prove the existence, nonexistence and the limit behavior of the nonnegative vector solutions depending on parameters. In the special case of q=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=2$$\end{document}, existence of nonnegative solution is also established. Our work extends and develops some recent results in the literature.
引用
收藏
相关论文
共 50 条
[21]   Multiplicity of solutions for a class of quasilinear elliptic equation involving the critical Sobolev and Hardy exponents [J].
Liang, Sihua ;
Zhang, Jihui .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2010, 17 (01) :55-67
[22]   MULTIPLICITY OF SOLUTIONS FOR SINGULAR SEMILINEAR ELLIPTIC EQUATIONS WITH CRITICAL HARDY-SOBOLEV EXPONENTS [J].
Guo, Qianqiao ;
Niu, Pengcheng ;
Dou, Jingbo .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2008, 2 (02) :158-174
[23]   Existence of solutions of fractionalp-Laplacian systems with different critical Sobolev-Hardy exponents [J].
Nyamoradi, Nemat ;
Kirane, Mokhtar .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (17) :10237-10248
[24]   MULTIPLE SOLUTIONS FOR A CLASS OF KIRCHHOFF TYPE EQUATIONS WITH ZERO MASS AND HARDY-LITTLEWOOD-SOBOLEV CRITICAL NONLINEARITY [J].
Wei, Chongqing ;
Li, Anran .
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2024, 8 (01) :23-39
[25]   NORMALIZED SOLUTIONS FOR LOWER CRITICAL CHOQUARD EQUATIONS WITH CRITICAL SOBOLEV PERTURBATION [J].
Yao, Shuai ;
Chen, Haibo ;
Radulescu, Vicentiu D. ;
Sun, Juntao .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (03) :3696-3723
[26]   Multiple solutions for a class of noncooperative critical nonlocal system with variable exponents [J].
Song, Yueqiang ;
Shi, Shaoyun .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (08) :6630-6646
[27]   MULTIPLICITY AND CONCENTRATION OF SOLUTIONS TO A SINGULAR CHOQUARD EQUATION WITH CRITICAL SOBOLEV EXPONENT [J].
Yu, Shengbin ;
Chen, Jianqing .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (01) :110-136
[28]   On the quasilinear elliptic problem with a critical Hardy-Sobolev exponent and a Hardy term [J].
Kang, Dongsheng .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (08) :2432-2444
[29]   On the elliptic problems involving multi-singular inverse square potentials and multi-critical Sobolev-Hardy exponents [J].
Kang, Dongsheng ;
Li, Guiqing .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (08) :1806-1816