On Nonlocal Choquard System with Hardy–Littlewood–Sobolev Critical Exponents

被引:0
作者
Xiaorong Luo
Anmin Mao
Shuai Mo
机构
[1] Qufu Normal University,School of Mathematical Sciences
[2] Nankai University,School of Mathematical Sciences and LPMC
来源
The Journal of Geometric Analysis | 2022年 / 32卷
关键词
Choquard system; Upper critical exponent; Star-shaped domain; Variational method; 35J05; 35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
Standing wave solutions of the following Hartree system with nonlocal interaction and critical exponent are considered: -(a+b∫Ω|∇u|2)Δu=h(x)∫Ω|v(y)|2μ∗|x-y|μdy|u|2μ∗-2u+fλ(x)|u|q-2u,inΩ,-(a+b∫Ω|∇v|2)Δv=h(x)∫Ω|u(y)|2μ∗|x-y|μdy|v|2μ∗-2v+gσ(x)|v|q-2v,inΩ,u,v≥0,inΩ,u,v=0,on∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{lllll} &{}-(a+b\displaystyle \int _{\Omega }|\nabla u|^2)\Delta u=h(x)\left( \displaystyle \int _{\Omega }\frac{|v(y)|^{2^*_\mu }}{|x-y|^\mu }\mathrm{{d}}y\right) |u|^{2^*_\mu -2}u\\ &{} \qquad \qquad \qquad \qquad \qquad \qquad \qquad + f_\lambda (x)|u|^{q-2}u,\quad in\,\Omega ,\\ &{}-(a+b\displaystyle \int _{\Omega }|\nabla v|^2)\Delta v=h(x)\left( \displaystyle \int _{\Omega }\frac{|u(y)|^{2^*_\mu }}{|x-y|^\mu }\mathrm{{d}}y\right) |v|^{2^*_\mu -2}v\\ &{} \qquad \qquad \qquad \qquad \qquad \qquad \qquad + g_\sigma (x)|v|^{q-2}v,\quad in\,\Omega ,\\ &{} u,v\ge 0, \quad \ in\,\Omega ,\\ &{} u,v=0, \quad \ on\,\partial \Omega , \end{array} \right. \end{aligned}$$\end{document}where 1<q<2,2μ∗=2N-μN-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<q<2, 2^{*}_{\mu }=\frac{2N-\mu }{N-2}$$\end{document} is the upper critical exponent in the sense of the Hardy–Littlewood–Sobolev inequality. We study the effect of nonlocal interaction on the number of solutions in the case of general response function Ψ(x)=|x|-μ(0<μ<N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi (x)=|x|^{-\mu } (0<\mu <N)$$\end{document}, which possesses more information on the mutual interaction between the particles. When parameters pair (λ,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lambda , \sigma )$$\end{document} belongs to a certain subset of R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document}, we prove the existence, nonexistence and the limit behavior of the nonnegative vector solutions depending on parameters. In the special case of q=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=2$$\end{document}, existence of nonnegative solution is also established. Our work extends and develops some recent results in the literature.
引用
收藏
相关论文
共 50 条
[1]   On Nonlocal Choquard System with Hardy-Littlewood-Sobolev Critical Exponents [J].
Luo, Xiaorong ;
Mao, Anmin ;
Mo, Shuai .
JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (08)
[2]   NONLINEAR CHOQUARD EQUATIONS WITH HARDY-LITTLEWOOD-SOBOLEV CRITICAL EXPONENTS [J].
Luo, Xiaorong ;
Mao, Anmin ;
Sang, Yanbin .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (04) :1319-1345
[3]   On the Kirchhoff type Choquard problem with Hardy-Littlewood-Sobolev critical exponent [J].
Rui, Jie .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 488 (02)
[4]   Normalized Solutions for the Fractional Choquard Equations with Hardy-Littlewood-Sobolev Upper Critical Exponent [J].
Meng, Yuxi ;
He, Xiaoming .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)
[5]   Choquard-type equations with Hardy-Littlewood Sobolev upper-critical growth [J].
Cassani, Daniele ;
Zhang, Jianjun .
ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) :1184-1212
[6]   Normalized solutions to the nonlinear Choquard equations with Hardy-Littlewood-Sobolev upper critical exponent [J].
Shang, Xudong ;
Ma, Pei .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 521 (02)
[7]   Fractional nonhomogeneous system with Hardy-Littlewood-Sobolev critical nonlinearity [J].
Sang, Yanbin ;
Han, Zhiling ;
Yu, Xue .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (10) :1639-1662
[8]   Quasilinear Elliptic Systems Involving Critical Hardy–Sobolev and Sobolev Exponents [J].
Dongsheng Kang ;
Yangguang Kang .
Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40 :1-17
[9]   Quasilinear Elliptic Systems Involving Critical Hardy-Sobolev and Sobolev Exponents [J].
Kang, Dongsheng ;
Kang, Yangguang .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (01) :1-17
[10]   On the quasilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy terms [J].
Kang, Dongsheng .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (07) :1973-1985