Sidon Basis in Polynomial Rings over Finite Fields

被引:0
作者
Wentang Kuo
Shuntaro Yamagishi
机构
[1] University of Waterloo,Department of Pure Mathematics
[2] Utrecht University,Mathematical Institute
来源
Czechoslovak Mathematical Journal | 2021年 / 71卷
关键词
Sidon set; additive basis; polynomial rings over finite fields; 11K31; 11B83; 11T55;
D O I
暂无
中图分类号
学科分类号
摘要
Let Fq[t]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_q}\left[ t \right]$$\end{document} denote the polynomial ring over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_q}$$\end{document}, the finite field of q elements. Suppose the characteristic of Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_q}$$\end{document} is not 2 or 3. We prove that there exist infinitely many N ∈ ℕ such that the set {f∈Fq[t]:degf<N}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {f \in {\mathbb{F}_q}\left[ t \right]:\deg f < N} \right\}$$\end{document} contains a Sidon set which is an additive basis of order 3.
引用
收藏
页码:555 / 562
页数:7
相关论文
共 18 条
  • [1] Cilleruelo J(2012)Combinatorial problems in finite fields and Sidon sets Combinatorica 32 497-511
  • [2] Cilleruelo J(2015)On Sidon sets and asymptotic bases Proc. Lond. Math. Soc. 111 1206-1230
  • [3] Deshouillers J-M(2009)A Sidon basis Acta Math. Hung 123 233-238
  • [4] Plague A(1994)On additive properties of general sequences Discrete Math 136 75-99
  • [5] Erdős P(1994)On sum sets of Sidon sets I J. Number Theory 47 329-347
  • [6] Sárközy A(1941)On a problem of Sidon in additive number theory, and on some related problems J. Lond. Math. Soc 16 212-215
  • [7] Sós V T(2010)On Sidon sets which are asymptotic basis Acta Math. Hung 128 46-58
  • [8] Erdős P(2014)On Sidon sets which are asymptotic bases of order 4 Funct. Approximatio, Comment. Math 51 393-413
  • [9] Sárközy A(1954)Number of points of varieties in finite fields Am. J. Math 76 819-827
  • [10] Sós V T(undefined)undefined undefined undefined undefined-undefined