Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p$$\end{document}–Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_q$$\end{document} Fourier Multipliers on Locally Compact Quantum Groups

被引:0
作者
Haonan Zhang
机构
[1] University of California,Department of Mathematics
关键词
Fourier multiplier; Schur multiplier; Locally compact quantum groups; Noncommutative ; -spaces; Noncommutative Lorentz spaces; Hausdorff–Young inequality; Interpolation;
D O I
10.1007/s00041-023-10029-z
中图分类号
学科分类号
摘要
Let G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {G}$$\end{document} be a locally compact quantum group with dual G^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widehat{\mathbb {G}}$$\end{document}. Suppose that the left Haar weight φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} and the dual left Haar weight φ^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widehat{\varphi }$$\end{document} are tracial, e.g. G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {G}$$\end{document} is a unimodular Kac algebra. We prove that for 1<p≤2≤q<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p\le 2 \le q<\infty $$\end{document}, the Fourier multiplier mx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{x}$$\end{document} is bounded from Lp(G^,φ^)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p(\widehat{\mathbb {G}},\widehat{\varphi })$$\end{document} to Lq(G^,φ^)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_q(\widehat{\mathbb {G}},\widehat{\varphi })$$\end{document} whenever the symbol x lies in Lr,∞(G,φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{r,\infty }(\mathbb {G},\varphi )$$\end{document}, where 1/r=1/p-1/q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/r=1/p-1/q$$\end{document}. Moreover, we have ‖mx:Lp(G^,φ^)→Lq(G^,φ^)‖≤cp,q‖x‖Lr,∞(G,φ),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert m_{x}:L_p(\widehat{\mathbb {G}},\widehat{\varphi })\rightarrow L_q(\widehat{\mathbb {G}},\widehat{\varphi })\Vert \le c_{p,q} \Vert x\Vert _{L_{r,\infty }(\mathbb {G},\varphi )}, \end{aligned}$$\end{document}where cp,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_{p,q}$$\end{document} is a constant depending only on p and q. This was first proved by Hörmander (Acta Math 104:93–140, 1960) for Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document}, and was recently extended to more general groups and quantum groups. Our work covers all these results and the proof is simpler. In particular, this also yields a family of Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p$$\end{document}-Fourier multipliers over discrete group von Neumann algebras. A similar result for Sp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}_p$$\end{document}-Sq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}_q$$\end{document} Schur multipliers is also proved.
引用
收藏
相关论文
共 28 条
  • [1] Akylzhanov R(2018)Smooth dense subalgebras and Fourier multipliers on compact quantum groups Commun. Math. Phys. 362 761-799
  • [2] Majid S(2016)Hardy-Littlewood-Paley-type inequalities on compact Lie groups Mat. Zametki 100 287-290
  • [3] Ruzhansky M(2016)Fourier multipliers and group von Neumann algebras C. R. Math. Acad. Sci. Paris 354 766-770
  • [4] Akylzhanov R(2013)The J. Oper. Theory 69 161-193
  • [5] Nursultanov ED(1980)-Fourier transform on locally compact quantum groups J. Funct. Anal. 35 153-164
  • [6] Ruzhanskiĭ MV(2010)On the spatial theory of von Neumann algebras Int. J. Math. 21 1619-1632
  • [7] Akylzhanov R(1953)A Hausdorff-Young inequality for locally compact quantum groups Bull. Soc. Math. France 81 9-39
  • [8] Ruzhansky M(1986)Formes linéaires sur un anneau d’opérateurs Pac. J. Math. 123 269-300
  • [9] Caspers M(1981)Generalized J. Funct. Anal. 40 151-169
  • [10] Connes A(1960)-numbers of Acta Math. 104 93-140