Blow-up, quenching, aggregation and collapse in a chemotaxis model with reproduction term

被引:0
作者
Jun-feng Li
Hua Chen
Wei-an Liu
机构
[1] Central China Normal University,School of Mathematics and Statistics
[2] Wuhan University,School of Mathematics and Statistics
来源
Acta Mathematicae Applicatae Sinica, English Series | 2014年 / 30卷
关键词
chemotaxis; ratio-dependence reproduction term; blow up; quench; super-sub-solution; 35K57; 35M20; 92D25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the following chemotaxis model with ratio-dependent logistic reaction term \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ \begin{gathered} \tfrac{{\partial u}} {{\partial t}} = D\nabla (\nabla u - u\tfrac{{\nabla w}} {w}) + u(a - b\tfrac{u} {w}), (x,t) \in Q_T , \hfill \\ \tfrac{{\partial u}} {{\partial t}} = \beta u - \delta w, (x,t) \in Q_T , \hfill \\ u\nabla \ln (\tfrac{u} {w}) \cdot \vec n = 0, x \in \partial \Omega 0 < t < T, \hfill \\ u(x,0) = u_0 (x) > 0, x \in \bar \Omega , \hfill \\ w(x,0) = w_0 (x) > 0, x \in \bar \Omega , \hfill \\ \end{gathered} \right.$$\end{document} It is shown that the solution to the problem exists globally if b + β ≥ 0 and will blow up or quench if b + β < 0 by means of function transformation and comparison method. Various asymptotic behavior related to different coefficients and initial data is also discussed.
引用
收藏
页码:617 / 626
页数:9
相关论文
共 35 条
[1]  
Erban R(2004)From individual to collective behavior in bacterial chemotaxis SIAM J. Appl. Math. 65 361-391
[2]  
Othmer HG(2001)Global Existence for a Parabolic Model with Bounded chemotaxis-Prevention of overcrowding Adv. Appl. Math 26 280-301
[3]  
Hillen T(2001)Hyperbolic Models for Chemotaxis in 1-D Nonl. Anal.: Real world Appl. 1 409-433
[4]  
Painter KJ(2003)From 1970 until present: the Keller-Segel model in chemotaxis and its consequences I Jahresberichte der DMV. 105 103-165
[5]  
Hillen T(2004)From 1970 until present: the Keller-Segel model in chemotaxis and its consequences II Jahresberichte der DMV. JB106 51-69
[6]  
Stevens A(2009)Existence of Solution to Some Othmer-Stevens Chemotaxis System with Reaction Term Acta Mathemaitica Scienta (Series A) 29 1561-1571
[7]  
Horstmann D(2010)Existence and Behavior of Solution to Some Chemotaxis System with Interacting Species International J. Biomathematics 3 367-382
[8]  
Horstmann D(1970)Initiation of slime mold aggregation viewed as an instability Journal of Theoretical Biology 26 399-415
[9]  
Li JF(1997)Aggregation, blow-up and collapse: the ABC’s of taxis in reinforced random walks SIAM Journal on Applied Mathematics 57 1044-1081
[10]  
Liu WA(2003)Sherratt, Modelling the movement of interacting cell populations J. Theor. Biol. 225 327-339