Transient electrohydrodynamics of compound drops

被引:0
|
作者
Ali Behjatian
Asghar Esmaeeli
机构
[1] Southern Illinois University at Carbondale,
来源
Acta Mechanica | 2015年 / 226卷
关键词
Vortex; Prolate; Closed Form Analytical Solution; Toroidal Vortex; Electric Stress;
D O I
暂无
中图分类号
学科分类号
摘要
The transient electrohydrodynamics of a compound drop under a uniform electric field of small strength is investigated. A closed form analytical solution is developed for creeping flow regimes and fluid systems and drop sizes with moderate and/or large Ohnesorge numbers, in the framework of leaky dielectric theory. For small distortion from a spherical shape, the inner and the outer drops deform to ellipsoids, and their deformation–time histories can be represented by Dij=Aijexp(-t/τ1)+Bijexp(-t/τ2)+Dij∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}_{ij}=A_{ij} {\rm exp}(-t/\tau_1) + B_{ij} {\rm exp}(-t/\tau_2) + \mathcal{D}^\infty_{ij}}$$\end{document} , where ij = 12,23 refers to the surfaces of the inner and the outer drops, τ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau_1}$$\end{document} and τ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau_2}$$\end{document} are the characteristic times, Aij and Bij are the coefficients that depend on the input parameters of the system, and Dij∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}^\infty_{ij}}$$\end{document} are the steady-state deformation parameters. The evolution of the flow field for several fluid systems was explored, and it was shown that the ratios of electric conductivities and permittivities of the participating fluids play a key role in determining the evolution of the flow field toward the steady state and that the steady-state flow is established by the motion of toroidal vortices that are formed in the drops and move outward, or formed in the ambient fluid and move inward.
引用
收藏
页码:2581 / 2606
页数:25
相关论文
共 50 条
  • [1] Transient electrohydrodynamics of compound drops
    Behjatian, Ali
    Esmaeeli, Asghar
    ACTA MECHANICA, 2015, 226 (08) : 2581 - 2606
  • [2] Electrohydrodynamics of Drops and Vesicles
    Vlahovska, Petia M.
    ANNUAL REVIEW OF FLUID MECHANICS, VOL 51, 2019, 51 : 305 - 330
  • [3] ELECTROHYDRODYNAMICS OF A PAIR OF LIQUID DROPS
    SOZOU, C
    JOURNAL OF FLUID MECHANICS, 1975, 67 (JAN28) : 339 - 348
  • [4] Electrohydrodynamics of a compound drop
    Behjatian, Ali
    Esmaeeli, Asghar
    PHYSICAL REVIEW E, 2013, 88 (03):
  • [5] Electrohydrodynamics of particle-covered drops
    Ouriemi, Malika
    Vlahovska, Petia M.
    JOURNAL OF FLUID MECHANICS, 2014, 751 : 106 - 120
  • [6] Electrohydrodynamics of lenticular drops and equatorial streaming
    Wagoner, Brayden W.
    Vlahovska, Petia M.
    Harris, Michael T.
    Basaran, Osman A.
    JOURNAL OF FLUID MECHANICS, 2021, 925
  • [7] Nonlinear electrohydrodynamics of slightly deformed oblate drops
    Lanauze, Javier A.
    Walker, Lynn M.
    Khair, Aditya S.
    JOURNAL OF FLUID MECHANICS, 2015, 774 : 245 - 266
  • [8] Transient electrohydrodynamics of a liquid drop
    Esmaeeli, Asghar
    Sharifi, Payam
    PHYSICAL REVIEW E, 2011, 84 (03):
  • [9] Electrohydrodynamics of drops in strong uniform dc electric fields
    Salipante, Paul F.
    Vlahovska, Petia M.
    PHYSICS OF FLUIDS, 2010, 22 (11)
  • [10] Electrohydrodynamics of viscous drops in strong electric fields: numerical simulations
    Das, Debasish
    Saintillan, David
    JOURNAL OF FLUID MECHANICS, 2017, 829 : 127 - 152