Bifurcations and multistability of the oscillations of a three-dimensional system

被引:5
|
作者
Martynyuk A.A. [1 ]
Nikitina N.V. [1 ]
机构
[1] S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, 3 Nesterova St, Kyiv
关键词
Bifurcation; Chaos; Multistable system; Nonlinear monotonic systems;
D O I
10.1007/s10778-015-0687-5
中图分类号
学科分类号
摘要
A generator with inertial nonlinearity is considered. The bifurcations are illustrated by simple examples using the comparison method and Lyapunov functions. © 2015, Springer Science+Business Media New York.
引用
收藏
页码:223 / 232
页数:9
相关论文
共 50 条
  • [21] THREE-DIMENSIONAL BIFURCATIONS OF PERIODIC SOLUTIONS AROUND THE TRIANGULAR EQUILIBRIUM POINTS OF THE RESTRICTED THREE-BODY PROBLEM
    Perdios, E.
    Zagouras, C. G.
    Ragos, O.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1991, 51 (04) : 349 - 362
  • [22] Analysis of a new three-dimensional chaotic system
    Xuebing Zhang
    Honglan Zhu
    Hongxing Yao
    Nonlinear Dynamics, 2012, 67 : 335 - 343
  • [23] Bifurcation of periodic orbits of a three-dimensional system
    Liu, XL
    Han, M
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2005, 26 (02) : 253 - 274
  • [24] Analysis of a new three-dimensional chaotic system
    Zhang, Xuebing
    Zhu, Honglan
    Yao, Hongxing
    NONLINEAR DYNAMICS, 2012, 67 (01) : 335 - 343
  • [25] BIFURCATION OF PERIODIC ORBITS OF A THREE-DIMENSIONAL SYSTEM
    LIU Xuanliang HAN Maoan Department of Mathematics
    ChineseAnnalsofMathematics, 2005, (02) : 253 - 274
  • [26] Three-dimensional mapping analysis of a capsule system with bilateral elastic constraints
    Zheng, Yanxiao
    Li, Qunhong
    Zhang, Wei
    Lei, Jinfeng
    CHAOS SOLITONS & FRACTALS, 2023, 172
  • [27] Multistability Analysis of a Piecewise Map via Bifurcations
    Cassal-Quiroga, B. B.
    Gilardi-Velazquez, H. E.
    Campos-Canton, E.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (16):
  • [28] Noose Structure and Bifurcations of Periodic Orbits in Reversible Three-Dimensional Piecewise Linear Differential Systems
    V. Carmona
    F. Fernández-Sánchez
    E. García-Medina
    A. E. Teruel
    Journal of Nonlinear Science, 2015, 25 : 1209 - 1224
  • [29] Collective oscillations in a three-dimensional spin model with non-reciprocal interactions
    Guislain, Laura
    Bertin, Eric
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (09):
  • [30] Noose Structure and Bifurcations of Periodic Orbits in Reversible Three-Dimensional Piecewise Linear Differential Systems
    Carmona, V.
    Fernandez-Sanchez, F.
    Garcia-Medina, E.
    Teruel, A. E.
    JOURNAL OF NONLINEAR SCIENCE, 2015, 25 (06) : 1209 - 1224