Study of nanostructure of experimental Ti–5Al–4V–2Zr alloy

被引:3
作者
Rogozhkin S.V. [1 ,3 ]
Schastlivaya I.A. [2 ]
Leonov V.P. [2 ]
Nikitin A.A. [1 ,3 ]
Orlov N.N. [1 ]
Kozodaev M.A. [1 ,3 ]
Vasiliev A.L. [4 ]
Orekhov A.S. [4 ]
机构
[1] Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre “Kurchatov Institute,”, Moscow
[2] National Research Center Kurchatov Institute—Central Research Institute of Structural Materials Prometey, St. Petersburg
[3] National Research Nuclear University MEPhI, Moscow
[4] National Research Center Kurchatov Institute, Moscow
关键词
chemical composition; nanosized pre-precipitates; phase composition; radiation damage; radiation dose; titanium alloy;
D O I
10.1134/S2075113317060119
中图分类号
学科分类号
摘要
The microstructure and chemical composition of phases and inclusions in Ti–5Al–4V–2Zr alloys are studied in the initial state, after irradiation by titanium ions to radiation damage dose of ~1 dpa at 260°C, and after thermal aging at 450°C for 1000 h. Microstructural studies are carried out using scanning electron microscopy and atom probe tomography. Phase analysis is performed using energy dispersive X-ray spectroscopy. Chemical analysis of grains of the matrix phase and β-phase is presented. Spatial distribution of chemical elements in α- and β-phase lamellae is analyzed by atom probe tomography. Formation of nanosized vanadium pre-precipitates in the α-phase is observed in irradiated material. © 2017, Pleiades Publishing, Ltd.
引用
收藏
页码:848 / 860
页数:12
相关论文
共 50 条
[31]   Effect of heat treatment on the microstructure and tensile properties of Ti-5Al-3Zr-4Mo-3V alloy [J].
Peng, Shuang ;
Ji, Haibin ;
Feng, Xin ;
Qiu, Jianke ;
Lei, Jiafeng .
INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2015, 106 (03) :242-247
[32]   The Effect of Irradiation of a Titanium Alloy of the Ti–6Al–4V–Н System with Pulsed Electron Beams on Its Creep [J].
G. P. Grabovetskaya ;
E. N. Stepanova ;
I. P. Mishin ;
O. V. Zabudchenko .
Russian Physics Journal, 2020, 63 :932-939
[33]   Linear friction welding of Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy with dissimilar microstructure [J].
Ji, Yingping ;
Chai, Zhenzhen ;
Zhao, Dalong ;
Wu, Sujun .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2014, 214 (04) :979-987
[34]   Failure mechanisms of a PCD tool in high-speed face milling of Ti–6Al–4V alloy [J].
Anhai Li ;
Jun Zhao ;
Dong Wang ;
Jiabang Zhao ;
Yongwang Dong .
The International Journal of Advanced Manufacturing Technology, 2013, 67 :1959-1966
[35]   Formation of adiabatic shear band and deformation mechanisms during warm compression of Ti–6Al–4V alloy [J].
Jiao Luo ;
Lin-Feng Wang ;
Miao-Quan Li ;
Chang-Jian Ge ;
Xiao-Xiao Ma ;
Yong-Ting Yang .
RareMetals, 2016, 35 (08) :598-605
[36]   Formation of adiabatic shear band and deformation mechanisms during warm compression of Ti–6Al–4V alloy [J].
Jiao Luo ;
Lin-Feng Wang ;
Miao-Quan Li ;
Chang-Jian Ge ;
Xiao-Xiao Ma ;
Yong-Ting Yang .
Rare Metals, 2016, 35 :598-605
[37]   Structure and Phase Composition of Ti–6Al–4V Alloy Obtained by Electron-Beam Additive Manufacturing [J].
V. R. Utyaganova ;
A. V. Vorontsov ;
A. A. Eliseev ;
K. S. Osipovich ;
K. N. Kalashnikov ;
N. L. Savchenko ;
V. E. Rubtsov ;
E. A. Kolubaev .
Russian Physics Journal, 2019, 62 :1461-1468
[38]   Effect of Ultrasonic Impact Treatment on Microstructure and Fatigue Life of 3D Printed Ti–6Al–4V Titanium Alloy [J].
O. B. Perevalova ;
A. V. Panin ;
M. S. Kazachenok ;
S. A. Martynov .
Physics of Metals and Metallography, 2023, 124 :1059-1065
[39]   Manufacturing of Ti–Al–Zr–Mo–V Alloy Components by Additive Methods [J].
V. M. Semenchuk ;
A. V. Nikolaeva ;
N. L. Savchenko ;
A. P. Zykova ;
A. V. Chumaevskii ;
S. Yu. Nikonov ;
E. A. Kolubaev .
Russian Physics Journal, 2024, 66 :1180-1188
[40]   Growth kinetics and mechanism of microarc oxidation coating on Ti−6Al−4V alloy in phosphate/silicate electrolyte [J].
Dajun Zhai ;
Tao Qiu ;
Jun Shen ;
Keqin Feng .
International Journal of Minerals, Metallurgy and Materials, 2022, 29 :1991-1999