Spatial ability learning through educational robotics

被引:0
作者
Carme Julià
Juan Òscar Antolí
机构
[1] Universitat Rovira i Virgili (URV),Department of Computer Science and Mathematics
[2] Col·legi Teresià de Tortosa,undefined
来源
International Journal of Technology and Design Education | 2016年 / 26卷
关键词
Robotics; Spatial ability; Visualization;
D O I
暂无
中图分类号
学科分类号
摘要
Several authors insist on the importance of students’ acquisition of spatial abilities and visualization in order to have academic success in areas such as science, technology or engineering. This paper proposes to discuss and analyse the use of educational robotics to develop spatial abilities in 12 year old students. First of all, a course to introduce robotics to 6th grade primary school students was designed. The key intention was to prepare practical and motivating sessions in order to foster the students’ involvement in hands-on learning. Hence, during the sessions of the course, challenges were provided for the students, in order to develop their capabilities as proficient problem solvers. The teacher assisted and guided the students, and the students were encouraged to solve the problems by themselves, working in 3-members teams. The main goal of this paper is to discuss and analyse the potential usefulness of educational robotics to develop spatial abilities. To carry out the analysis, students were randomly divided into an experimental group (EG), which participated in the robotics course, and a control group (CG), which did not take part in the robotics course. The extensive existing literature for spatial ability evaluation was analysed and reviewed and a pre-test and a post-test were prepared for use in the research study. Initially, the spatial ability of both EG and CG students was assessed with the pre-test. Then, after finishing the robotics course, the same sets of students were tested with the post-test. An extensive analysis of the results is provided in the paper. Results show that the positive change in spatial ability of the participants in the robotics course (EG) was greater than change evident in the students who did not join the course (CG). The improvement was statistically significant. The results also show that the overall performance of the students depends on the instruments used to evaluate their spatial abilities. Hence, this study manifests clearly the importance of the selection of those instruments.
引用
收藏
页码:185 / 203
页数:18
相关论文
共 32 条
[1]  
Barak M(2009)Robotics projects and learning concepts in science, technology and problem solving International Journal of Technology and Design Education 19 289-307
[2]  
Zadok Y(2007)Robotics as means to increase achievement scores in an informal learning environment Journal of Research on Technology in Education 39 229-243
[3]  
Barker B(2012)Exploring the educational potential of robotics in schools: A systematic review Computers and Education 58 978-988
[4]  
Ansorge J(2005)Teaching partnerships: Early childhood and engineering, students teaching math and science through robotics Journal of Science Education and Technology 14 59-73
[5]  
Benitti F(2006)Learning support tools for developing spatial abilities in engineering design International Journal of Engineering Education 22 470-477
[6]  
Bers M(2012)The malleability of spatial ability under treatment of a first lego league-based robotics simulation Journal for the Education of the Gifted 35 291-316
[7]  
Portsmore M(2013)Learning to explain: The role of educational robots in science education Themes in Science and Technology Education 6 29-38
[8]  
Contero M(2004)A dissociation between mental rotation and perspective-taking spatial abilities Intelligence 32 175-191
[9]  
Naya F(2010)Robotic toys as a catalyst for mathematical problem solving Australian Primary Mathematics Classroom 15 22-27
[10]  
Company P(1993)Utility of predicting group membership and the role of spatial visualization in becoming an engineer, physical scientist, or artist Journal of Applied Psychology 78 250-261