Asymptotic Behavior and Zero Distribution of Polynomials Orthogonal with Respect to Bessel Functions

被引:0
作者
Alfredo Deaño
Arno B. J. Kuijlaars
Pablo Román
机构
[1] Universidad Carlos III de Madrid,Departamento de Matemáticas
[2] KU Leuven,Department of Mathematics
[3] Universidad Nacional de Córdoba,CIEM, FaMAF
来源
Constructive Approximation | 2016年 / 43卷
关键词
Orthogonal polynomials; Riemann–Hilbert problems; Asymptotic representations in the complex domain; Limiting zero distribution; Bessel functions; 33C47; 34M50; 30E15; 33C10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider polynomials Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_n$$\end{document} orthogonal with respect to the weight Jν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{\nu }$$\end{document} on [0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,\infty )$$\end{document}, where Jν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{\nu }$$\end{document} is the Bessel function of order ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}. Asheim and Huybrechs considered these polynomials in connection with complex Gaussian quadrature for oscillatory integrals. They observed that the zeros of Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_n$$\end{document} are complex and accumulate as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \rightarrow \infty $$\end{document} near the vertical line Rez=νπ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{{\text {Re}}\,}}}z = \frac{\nu \pi }{2}$$\end{document}. We prove this fact for the case 0≤ν≤1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le \nu \le 1/2$$\end{document} from strong asymptotic formulas that we derive for the polynomials Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_n$$\end{document} in the complex plane. Our main tool is the Riemann–Hilbert problem for orthogonal polynomials, suitably modified to cover the present situation, and the Deift–Zhou steepest descent method. A major part of the work is devoted to the construction of a local parametrix at the origin, for which we give an existence proof that only works for ν≤1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu \le 1/2$$\end{document}.
引用
收藏
页码:153 / 196
页数:43
相关论文
共 41 条
[1]  
Asheim A(2013)Complex Gaussian quadrature for oscillatory integral transforms IMA J. Numer. Anal. 33 1322-1341
[2]  
Huybrechs D(2014)Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters J. Math. Anal. Appl. 416 52-80
[3]  
Atia MJ(2012)Exact solution of the six–vertex model with domain wall boundary conditions. Critical line between disordered and antiferroelectric phases Random Matrices Theory Appl. 01 1250012-63
[4]  
Martínez-Finkelshtein A(2014)Large degree asymptotics of orthogonal polynomials with respect to an oscillatory weight on a bounded interval J. Approx. Theory 186 33-1299
[5]  
Martínez-González P(2011)Asymptotics of Toeplitz, Hankel, and Toeplitz Ann. Math. 174 1243-1438
[6]  
Thabet F(2013)Hankel determinants with Fisher–Hartwig singularities Commun. Pure Appl. Math. 66 1360-1425
[7]  
Bleher PM(1999)Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model: some history and some recent results Commun. Pure Appl. Math. 52 1335-430
[8]  
Bothner T(1992)Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory Commun. Math. Phys. 147 395-831
[9]  
Deaño A(2010)The isomonodromy approach to matrix models in 2D quantum gravity J. Approx. Theory 162 807-263
[10]  
Deift P(2011)On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials Constr. Approx. 33 219-247