Suborbital Graphs for the Group ΓC(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _{C}(N)$$\end{document}

被引:0
作者
Nazlı Yazıcı Gözütok
Bahadır Özgür Güler
机构
[1] Karadeniz Technical University,Department of Mathematics
关键词
Normalizer; Congruence subgroup; Suborbital graphs; Primary 20H10; Secondary 05C25;
D O I
10.1007/s41980-018-0151-5
中图分类号
学科分类号
摘要
We investigate suborbital graphs for an imprimitive action of the group ΓC(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _{C}(N)$$\end{document} on a maximal subset of extended rational numbers. We will investigate suborbital graphs arising from this action and its some properties.
引用
收藏
页码:593 / 605
页数:12
相关论文
共 28 条
  • [1] Akbaş M(1990)The normalizer of Glasg. Math. 32 317-327
  • [2] Singerman D(2001) in Bull. Lond. Math. Soc. 33 647-652
  • [3] Akbaş M(2004)On suborbital graphs for the modular group Exp. Math. 13 343-360
  • [4] Chua KS(1977)Congruence subgroups associated to the monster Bull. Lond. Math. Soc. 11 308-339
  • [5] Lang ML(2011)Monstrous moonshine Hacet. J. Math. Stat. 40 203-210
  • [6] Conway JH(2015)Elliptic elements and circuits in suborbital graphs Hacet. J. Math. Stat. 44 1033-1044
  • [7] Norton SP(2016)Suborbital graphs for the group Springerplus 2016 1-11
  • [8] Güler BÖ(2013)Solution to some congruence equations via suborbital graphs Graphs Comb. 29 1813-1825
  • [9] Güler BÖ(2017)On suborbital graphs for the extended Modular group Graphs Comb. 33 1531-1542
  • [10] Güler BÖ(2013)Circuits in suborbital graphs for the normalizer J. Inequal. Appl. 117 1-7