The average distance property of Banach spaces

被引:0
作者
Pei-Kee Lin
机构
[1] Department of Mathematics,
[2] University of Memphis,undefined
[3] Memphis,undefined
[4] TN 38152,undefined
[5] USA,undefined
来源
Archiv der Mathematik | 1997年 / 68卷
关键词
Banach Space; Continuous Function; Real Number; Average Distance; Normal Space;
D O I
暂无
中图分类号
学科分类号
摘要
Let (A,d) be a bounded metric space. A positive real number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \alpha $\end{document} is said to be a rendezvous number of A if for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ n \in {\Bbb N} $\end{document} and any x1, ... ,xn (not necessarily distinct) in A, there exists \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ x \in A $\end{document} such that¶¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ {{1}\over{n}} \sum\limits_{i=1}^n d(x_i,x)= \alpha $\end{document}.¶¶A (real) Banach space X is said to have the average distance property if the unit sphere has a unique rendezvous number. R. Wolf conjectured that every reflexive Banach space has the average distance property. In this article, we showed that if 1 < p < 2, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \ell_p $\end{document} does not have the average distance property. This gives a negative solution of above conjecture. In this article, we also considered the set C(K) of all bounded continuous functions on normal space K. We proved that C(K) has the average distance property if and only if K contains at least one isolated point.
引用
收藏
页码:496 / 502
页数:6
相关论文
empty
未找到相关数据