Nonlocal Electron Dynamics in Donor‒Acceptor Doped Transistor Heterostructures

被引:1
作者
Pashkovskii A.B. [1 ]
Bogdanov A.S. [1 ]
Lukashin V.M. [1 ]
Novikov S.I. [1 ]
机构
[1] AO NPP Istok, Fryazino, 141195, Moscow oblast
关键词
Electrons; -; Deterioration;
D O I
10.1134/S1063739720030051
中图分类号
学科分类号
摘要
Abstract: A simple phenomenological model for estimating a drift velocity peak in transistor heterostructures with the strong electron localization in the channel is developed using a self-consistent solution of the Schrödinger and Poisson equations and a system of hydrodynamic equations. It is shown that, when an electron enters the region of a strong field, the donor–acceptor doping increases the average drift velocity of electrons several times in the inverted heterostructures and by a factor of 1.5 in the transistor heterostructures based on the double-sided doped InxGa1 – xAs–AlyGa1 – yAs and InxGa1 – xAs–InyAl1 – yAs heterojunctions. In this case, the surface density of electrons in the double-sided doped structures can be more than doubled without a noticeable deterioration of the transport characteristics. © 2020, Pleiades Publishing, Ltd.
引用
收藏
页码:195 / 209
页数:14
相关论文
共 42 条
[1]  
Dingle R., Stormer H.L., Gossard A.C., Wigman W., Electron mobilities in modulated—doped semiconductors heterojunction superlattices, Appl. Phys. Lett., 33, pp. 665-667, (1978)
[2]  
Stormer H.L., Dingle R., Gossard A.C., Wiegmann W., Sturge M.D., Two-dimensional electron gas at semiconductor—semiconductor interface, Solid State Commun., 29, pp. 705-709, (1978)
[3]  
Ando T., Fowler A., Stern F., Electronic properties of two-dimensional systems, Rev. Mod. Phys., 54, (1982)
[4]  
Kal'fa A.A., Pashkovskii A.B., Two-dimensional electron gas in a spatially inhomogeneous potential well, Sov. Phys. Semicond., 22, pp. 1325-1326, (1988)
[5]  
Mei X., Yoshida W., Lange M., Lee J., Zhou J., Liu P.H., Leong K., Zamora A., Padilla J., Sarkozy S., Lai R., Deal W.R., First demonstration of amplification at 1 THz using 25-nm InP high electron mobility transistor process, IEEE Electron Dev. Lett., 36, pp. 327-329, (2015)
[6]  
Moschetti G., Leuther A., Massler H., Aja B., Rosch M., Schlechtweg M., Ambacher O., Kangas V., Genevieve-Perichaud M., A 183 GHz metamorphic HEMT low-noise amplifier with 3.5 dB noise figure, IEEE Microwave Wireless Compon. Lett., 25, pp. 618-620, (2015)
[7]  
Amado-Rey B., Campos-Roca Y., Friesicke C., Tessmann A., Lozar R., Wagner S., Leuther A., Schlechtweg M., Ambacher O., A 280 GHz stacked-FET power amplifier cell using 50 nm metamorphic HEMT technology, Proceedings of the 11Th European Microwave Integrated Circuits Conference (Eumic), pp. 189-192, (2016)
[8]  
Pashkovskii A.B., Assessing the effect of a semiconductor structure on the noise characteristics of heterostructured field effect transistors, Mikroelektronika, 22, pp. 26-32, (1993)
[9]  
Lukashin V.M., Pashkovskii A.B., Zhuravlev K.S., Toropov A.I., Lapin V.G., Sokolov A.B., Decreasing the role of transverse spatial electron transport and increasing the output power of heterostructure field-effect transistors, Tech. Phys. Lett., 38, pp. 819-821, (2012)
[10]  
Lukashin V.M., Pashkovskii A.B., Zhuravlev K.S., Toropov A.I., Lapin V.G., Golant E.I., Kapralova A.A., Prospects for the development of high-power field-effect transistors based on heterostructures with donor-acceptor doping, Semiconductors, 48, pp. 666-674, (2014)