An Agmon–Allegretto–Piepenbrink principle for Schrödinger operators

被引:0
作者
Stefano Buccheri
Luigi Orsina
Augusto C. Ponce
机构
[1] University of Vienna,Faculty of Mathematics
[2] “Sapienza” Università di Roma,Dipartimento di Matematica
[3] Université catholique de Louvain,undefined
[4] Institut de Recherche en Mathématique et Physique,undefined
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2022年 / 116卷
关键词
Schrödinger operator; AAP principle; Poincaré inequality; Singular potential; Primary 35J10; 35R05; 46E35; Secondary 35B05; 35J15; 35J20;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that each Borel function V:Ω→[-∞,+∞]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V : \Omega \rightarrow [{-\infty }, +\infty ]$$\end{document} defined on an open subset Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb R}^{N}$$\end{document} induces a decomposition Ω=S∪⋃iDi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega = S \cup \bigcup _{i} D_{i}$$\end{document} such that every function in W01,2(Ω)∩L2(Ω;V+dx)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,2}_{0}(\Omega ) \cap L^{2}(\Omega ; V^{+} \,\mathrm {d}x)$$\end{document} is zero almost everywhere on S and existence of nonnegative supersolutions of -Δ+V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta + V$$\end{document} on each component Di\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{i}$$\end{document} yields nonnegativity of the associated quadratic form ∫Di(|∇ξ|2+Vξ2).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \int _{D_{i}} (|\nabla \xi |^2+V\xi ^2). $$\end{document}
引用
收藏
相关论文
empty
未找到相关数据