An Agmon–Allegretto–Piepenbrink principle for Schrödinger operators

被引:0
|
作者
Stefano Buccheri
Luigi Orsina
Augusto C. Ponce
机构
[1] University of Vienna,Faculty of Mathematics
[2] “Sapienza” Università di Roma,Dipartimento di Matematica
[3] Université catholique de Louvain,undefined
[4] Institut de Recherche en Mathématique et Physique,undefined
关键词
Schrödinger operator; AAP principle; Poincaré inequality; Singular potential; Primary 35J10; 35R05; 46E35; Secondary 35B05; 35J15; 35J20;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that each Borel function V:Ω→[-∞,+∞]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V : \Omega \rightarrow [{-\infty }, +\infty ]$$\end{document} defined on an open subset Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb R}^{N}$$\end{document} induces a decomposition Ω=S∪⋃iDi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega = S \cup \bigcup _{i} D_{i}$$\end{document} such that every function in W01,2(Ω)∩L2(Ω;V+dx)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,2}_{0}(\Omega ) \cap L^{2}(\Omega ; V^{+} \,\mathrm {d}x)$$\end{document} is zero almost everywhere on S and existence of nonnegative supersolutions of -Δ+V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta + V$$\end{document} on each component Di\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{i}$$\end{document} yields nonnegativity of the associated quadratic form ∫Di(|∇ξ|2+Vξ2).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \int _{D_{i}} (|\nabla \xi |^2+V\xi ^2). $$\end{document}
引用
收藏
相关论文
共 50 条
  • [1] An Agmon-Allegretto-Piepenbrink principle for Schrodinger operators
    Buccheri, Stefano
    Orsina, Luigi
    Ponce, Augusto C.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (04)
  • [2] An Agmon estimate for Schrödinger operators on graphs
    Stefan Steinerberger
    Letters in Mathematical Physics, 2023, 113
  • [3] Unique Continuation Principle for Spectral Projections of Schrödinger Operators and Optimal Wegner Estimates for Non-ergodic Random Schrödinger Operators
    Abel Klein
    Communications in Mathematical Physics, 2013, 323 : 1229 - 1246
  • [4] Dunkl–Schrödinger Operators
    Béchir Amri
    Amel Hammi
    Complex Analysis and Operator Theory, 2019, 13 : 1033 - 1058
  • [5] Pseudomodes of Schrödinger operators
    Krejcirik, David
    Siegl, Petr
    FRONTIERS IN PHYSICS, 2024, 12
  • [6] Concentration of Eigenfunctions of Schrödinger Operators
    Boris Mityagin
    Petr Siegl
    Joe Viola
    Journal of Fourier Analysis and Applications, 2022, 28
  • [7] Regularity for Eigenfunctions of Schrödinger Operators
    Bernd Ammann
    Catarina Carvalho
    Victor Nistor
    Letters in Mathematical Physics, 2012, 101 : 49 - 84
  • [8] Schrödinger Operators and the Zeros of Their Eigenfunctions
    Sol Schwartzman
    Communications in Mathematical Physics, 2011, 306 : 187 - 191
  • [9] Schrödinger Operators on Zigzag Nanotubes
    Evgeny Korotyaev
    Igor Lobanov
    Annales Henri Poincaré, 2007, 8 : 1151 - 1176
  • [10] Perturbations of Magnetic Schrödinger Operators
    M. Măntoiu
    M. Pascu
    Letters in Mathematical Physics, 2000, 54 : 181 - 192