PTAS for the minimum weighted dominating set in growth bounded graphs

被引:0
作者
Zhong Wang
Wei Wang
Joon-Mo Kim
Bhavani Thuraisingham
Weili Wu
机构
[1] University of Texas at Dallas,Department of Computer Science
[2] Xi’an Jiaotong University,Department of Mathematics
[3] Dankook University,undefined
来源
Journal of Global Optimization | 2012年 / 54卷
关键词
Approximation algorithm; Graph theory; PTAS; Dominating set;
D O I
暂无
中图分类号
学科分类号
摘要
The minimum weighted dominating set (MWDS) problem is one of the classic NP-hard optimization problems in graph theory with applications in many fields such as wireless communication networks. MWDS in general graphs has been showed not to have polynomial-time constant-approximation if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{NP} \neq \mathcal{P}}$$\end{document} . Recently, several polynomial-time constant-approximation SCHEMES have been designed for MWDS in unit disk graphs. In this paper, using the local neighborhood-based scheme technique, we present a PTAS for MWDS in polynomial growth bounded graphs with bounded degree constraint.
引用
收藏
页码:641 / 648
页数:7
相关论文
共 50 条
[41]   Block graphs with unique minimum dominating sets [J].
Fischermann, M .
DISCRETE MATHEMATICS, 2001, 240 (1-3) :247-251
[42]   Cactus graphs with unique minimum dominating sets [J].
Fischermann, M ;
Volkmann, L .
UTILITAS MATHEMATICA, 2003, 63 :229-238
[43]   Computing Minimum k-Connected m-Fold Dominating Set in General Graphs [J].
Zhang, Zhao ;
Zhou, Jiao ;
Tang, Shaojie ;
Huang, Xiaohui ;
Du, Ding-Zhu .
INFORMS JOURNAL ON COMPUTING, 2018, 30 (02) :217-224
[44]   On minimum m-connected k-dominating set problem in unit disc graphs [J].
Shang, Weiping ;
Yao, Frances ;
Wan, Pengjun ;
Hu, Xiaodong .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2008, 16 (02) :99-106
[45]   A polynomial-time approximation to a minimum dominating set in a graph [J].
Mira, Frank angel Hernandez ;
Inza, Ernesto Parra ;
Almira, Jose Maria Sigarreta ;
Vakhania, Nodari .
THEORETICAL COMPUTER SCIENCE, 2022, 930 :142-156
[46]   Liar's dominating set problem on unit disk graphs [J].
Jallu, Ramesh K. ;
Das, Gautam K. .
DISCRETE APPLIED MATHEMATICS, 2020, 286 :91-99
[47]   Statistical Mechanics of the Minimum Dominating Set Problem [J].
Zhao, Jin-Hua ;
Habibulla, Yusupjan ;
Zhou, Hai-Jun .
JOURNAL OF STATISTICAL PHYSICS, 2015, 159 (05) :1154-1174
[48]   Parameterized Complexity of Minimum Membership Dominating Set [J].
Akanksha Agrawal ;
Pratibha Choudhary ;
N. S. Narayanaswamy ;
K. K. Nisha ;
Vijayaragunathan Ramamoorthi .
Algorithmica, 2023, 85 :3430-3452
[49]   Statistical Mechanics of the Minimum Dominating Set Problem [J].
Jin-Hua Zhao ;
Yusupjan Habibulla ;
Hai-Jun Zhou .
Journal of Statistical Physics, 2015, 159 :1154-1174
[50]   Parameterized Complexity of Minimum Membership Dominating Set [J].
Agrawal, Akanksha ;
Choudhary, Pratibha ;
Narayanaswamy, N. S. ;
Nisha, K. K. ;
Ramamoorthi, Vijayaragunathan .
ALGORITHMICA, 2023, 85 (11) :3430-3452