PTAS for the minimum weighted dominating set in growth bounded graphs

被引:0
作者
Zhong Wang
Wei Wang
Joon-Mo Kim
Bhavani Thuraisingham
Weili Wu
机构
[1] University of Texas at Dallas,Department of Computer Science
[2] Xi’an Jiaotong University,Department of Mathematics
[3] Dankook University,undefined
来源
Journal of Global Optimization | 2012年 / 54卷
关键词
Approximation algorithm; Graph theory; PTAS; Dominating set;
D O I
暂无
中图分类号
学科分类号
摘要
The minimum weighted dominating set (MWDS) problem is one of the classic NP-hard optimization problems in graph theory with applications in many fields such as wireless communication networks. MWDS in general graphs has been showed not to have polynomial-time constant-approximation if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{NP} \neq \mathcal{P}}$$\end{document} . Recently, several polynomial-time constant-approximation SCHEMES have been designed for MWDS in unit disk graphs. In this paper, using the local neighborhood-based scheme technique, we present a PTAS for MWDS in polynomial growth bounded graphs with bounded degree constraint.
引用
收藏
页码:641 / 648
页数:7
相关论文
共 50 条
[32]   Distributed approximation algorithms for k-dominating set in graphs of bounded genus and linklessly embeddable graphs [J].
Czygrinow, Andrzej ;
Hanckowiak, Michal ;
Wawrzyniak, Wojciech ;
Witkowski, Marcin .
THEORETICAL COMPUTER SCIENCE, 2020, 809 (809) :327-338
[33]   On dominating set of some subclasses of string graphs [J].
Chakraborty, Dibyayan ;
Das, Sandip ;
Mukherjee, Joydeep .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2022, 107
[34]   PTAS for Weighted Set Cover on Unit Squares [J].
Erlebach, Thomas ;
van Leeuwen, Erik Jan .
APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, 2010, 6302 :166-+
[35]   MINIMUM TOTAL DOMINATING HYPERENERGETIC GRAPHS [J].
Malathy, K. ;
Meenakshi, S. .
ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 21 (02) :539-553
[36]   A note on the complexity of minimum dominating set [J].
Grandoni, Fabrizio .
JOURNAL OF DISCRETE ALGORITHMS, 2006, 4 (02) :209-214
[37]   The probabilistic minimum dominating set problem [J].
Boria, Nicolas ;
Murat, Cecile ;
Paschos, Vangelis Th. .
DISCRETE APPLIED MATHEMATICS, 2018, 234 :93-113
[38]   Dominating the complements of bounded tolerance graphs and the complements of trapezoid graphs [J].
Keil, JM ;
Belleville, P .
DISCRETE APPLIED MATHEMATICS, 2004, 140 (1-3) :73-89
[39]   Finding a dominating set on bipartite graphs [J].
Liedloff, Mathieu .
INFORMATION PROCESSING LETTERS, 2008, 107 (05) :154-157
[40]   Block graphs with unique minimum dominating sets [J].
Fischermann, M .
DISCRETE MATHEMATICS, 2001, 240 (1-3) :247-251