Torsion of Elliptic Curves Over Real Quadratic Fields of Smallest Discriminant

被引:0
作者
Naba Kanta Sarma
机构
[1] Assam University,Department of Mathematics
[2] Silchar,undefined
[3] Cachar,undefined
来源
Indian Journal of Pure and Applied Mathematics | 2019年 / 50卷
关键词
Elliptic curve; Torsion subgroup; cusp; discriminant;
D O I
暂无
中图分类号
学科分类号
摘要
In [9] and [10], Filip Najman examined the torsion of elliptic curves over the number fields ℚ(−1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{Q}\left( {\sqrt { - 1} } \right)$$\end{document} and ℚ(−3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{Q}\left( {\sqrt { - 3} } \right)$$\end{document}. In this paper, we study the torsion structures of elliptic curves over the real quadratic number fields ℚ(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{Q}\left( {\sqrt 2 } \right)$$\end{document} and ℚ(5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{Q}\left( {\sqrt 5 } \right)$$\end{document}, which have the smallest discriminants among all real quadratic fields ℚ(d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{Q}\left( {\sqrt d } \right)$$\end{document} with d ≢ 1 mod 4 and d ≡ 1 mod 4 respectively.
引用
收藏
页码:161 / 169
页数:8
相关论文
共 15 条
  • [1] Baziz H.(2010)Equations for the modular curve Math. Computation 79 2371-2386
  • [2] Bosma W.(1997)( J. Symbolic Comput. 24 235-265
  • [3] Cannon J.(1992)) and models of elliptic curves with torsion points Invent. Math. 109 221-229
  • [4] Playoust C.(2012)The Magma algebra system I: The user language Acta Arithmetica 152 291-305
  • [5] Kamienny S.(1977)Torsion points on elliptic curves and q-coefficients of modular forms Publications Mathématiques de I’I.H.É.S., Tome 47 33-186
  • [6] Kamienny S.(1988)Torsion groups of elliptic curves over Quadratic fields Nagoya Math. J. 109 125-149
  • [7] Najman F.(2011)Modular curves and Eisenstein ideal Math. Journal of Okayama University 53 75-82
  • [8] Mazur B.(2010)Torsion points on elliptic curves defined over quadratic fields Journal of Number Theory 130 1964-1968
  • [9] Kenku M. A.(2010)Torsion of elliptic curves over quadratic cyclotomic field Acta Arithmetica 144 17-52
  • [10] Momose F.(2001)Complete classification of torsion of elliptic curves over quadratic cyclotomic field Acta Arithmatica 98 245-277