De novo Nanopore read quality improvement using deep learning

被引:0
|
作者
Nathan LaPierre
Rob Egan
Wei Wang
Zhong Wang
机构
[1] Department of Computer Science,
[2] University of California,undefined
[3] Los Angeles,undefined
[4] Department of Energy Joint Genome Institute,undefined
[5] EGSB Division,undefined
[6] Lawrence Berkeley National Laboratory,undefined
[7] School of Natural Sciences,undefined
[8] University of California at Merced,undefined
来源
BMC Bioinformatics | / 20卷
关键词
Deep learning; Long sequence reads; Oxford Nanopore; de novo assembly;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Deep learning in template-free de novo biosynthetic pathway design of natural products
    Xie, Xueying
    Gui, Lin
    Qiao, Baixue
    Wang, Guohua
    Huang, Shan
    Zhao, Yuming
    Sun, Shanwen
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (06)
  • [42] Exploring the repository of de novo-designed bifunctional antimicrobial peptides through deep learning
    Dong, Ruihan
    Liu, Rongrong
    Liu, Ziyu
    Liu, Yangang
    Zhao, Gaomei
    Li, Honglei
    Hou, Shiyuan
    Ma, Xiaohan
    Kang, Huarui
    Liu, Jing
    Guo, Fei
    Zhao, Ping
    Wang, Junping
    Wang, Cheng
    Wu, Xingan
    Ye, Sheng
    Zhu, Cheng
    ELIFE, 2025, 13
  • [43] De novo assembly of the Indian blue peacock (Pavo cristatus) genome using Oxford Nanopore technology and Illumina sequencing
    Dhar, Ruby
    Seethy, Ashikh
    Pethusamy, Karthikeyan
    Singh, Sunil
    Rohil, Vishwajeet
    Purkayastha, Kakali
    Mukherjee, Indrani
    Goswami, Sandeep
    Singh, Rakesh
    Raj, Ankita
    Srivastava, Tryambak
    Acharya, Sovon
    Rajashekhar, Balaji
    Karmakar, Subhradip
    GIGASCIENCE, 2019, 8 (05):
  • [44] NOMA System Performance Improvement Using Chaos and Deep Learning
    Yin, Hui-Ping
    Ren, Hai-Peng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2025, 72 (01) : 374 - 382
  • [45] Performance Improvement in Rayleigh Faded Channel using Deep Learning
    Ganesh, Sriram
    Sunder, Sayee, V
    Thakre, Arpita
    2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2018, : 1307 - 1312
  • [46] Deep Air Quality Forecasting Using Hybrid Deep Learning Framework
    Du, Shengdong
    Li, Tianrui
    Yang, Yan
    Horng, Shi-Jinn
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (06) : 2412 - 2424
  • [47] Automated pill quality inspection using deep learning
    Mac, Thi Thoa
    Hung, Nguyen Thanh
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2021, 35 (14N16):
  • [48] Microstructure quality control of steels using deep learning
    Durmaz, Ali Riza
    Potu, Sai Teja
    Romich, Daniel
    Moeller, Johannes J.
    Nuetzel, Ralf
    FRONTIERS IN MATERIALS, 2023, 10
  • [49] Retinal image quality assessment using deep learning
    Zago, Gabriel Tozatto
    Andreao, Rodrigo Varejao
    Dorizzi, Bernadette
    Teatini Salles, Evandro Ottoni
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 103 : 64 - 70
  • [50] Mammography Image Quality Assurance Using Deep Learning
    Kretz, Tobias
    Mueller, Klaus-Robert
    Schaeffter, Tobias
    Elster, Clemens
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2020, 67 (12) : 3317 - 3326