De novo Nanopore read quality improvement using deep learning

被引:0
|
作者
Nathan LaPierre
Rob Egan
Wei Wang
Zhong Wang
机构
[1] Department of Computer Science,
[2] University of California,undefined
[3] Los Angeles,undefined
[4] Department of Energy Joint Genome Institute,undefined
[5] EGSB Division,undefined
[6] Lawrence Berkeley National Laboratory,undefined
[7] School of Natural Sciences,undefined
[8] University of California at Merced,undefined
来源
BMC Bioinformatics | / 20卷
关键词
Deep learning; Long sequence reads; Oxford Nanopore; de novo assembly;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning
    Teng, Haotian
    Minh Duc Cao
    Hall, Michael B.
    Duarte, Tania
    Wang, Sheng
    Coin, Lachlan J. M.
    GIGASCIENCE, 2018, 7 (05):
  • [32] A comprehensive survey on deep learning techniques in CT image quality improvement
    Li, Disen
    Ma, Limin
    Li, Jining
    Qi, Shouliang
    Yao, Yudong
    Teng, Yueyang
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2022, 60 (10) : 2757 - 2770
  • [33] A comprehensive survey on deep learning techniques in CT image quality improvement
    Disen Li
    Limin Ma
    Jining Li
    Shouliang Qi
    Yudong Yao
    Yueyang Teng
    Medical & Biological Engineering & Computing, 2022, 60 : 2757 - 2770
  • [34] Blockchain and deep learning technology for comprehensive improvement of transaction information quality
    Li, Jun
    Wu, Han
    ELECTRONIC COMMERCE RESEARCH, 2024,
  • [35] An exploration strategy improves the diversity of de novo ligands using deep reinforcement learning: a case for the adenosine A2A receptor
    Xuhan Liu
    Kai Ye
    Herman W. T. van Vlijmen
    Adriaan P. IJzerman
    Gerard J. P. van Westen
    Journal of Cheminformatics, 11
  • [36] De novo Prediction of Cell-Drug Sensitivities Using Deep Learning-based Graph Regularized Matrix Factorization
    Ren, Shuangxia
    Tao, Yifeng
    Yu, Ke
    Xue, Yifan
    Schwartz, Russell
    Lu, Xinghua
    BIOCOMPUTING 2022, PSB 2022, 2022, : 278 - 289
  • [37] An exploration strategy improves the diversity of de novo ligands using deep reinforcement learning: a case for the adenosine A2A receptor
    Liu, Xuhan
    Ye, Kai
    van Vlijmen, Herman W., I
    Ijzerman, Adriaan P.
    van Westen, Gerard J. P.
    JOURNAL OF CHEMINFORMATICS, 2019, 11 (1)
  • [38] Service quality evaluation and service improvement using online reviews: A framework combining deep learning with a hierarchical service quality model
    Liu, Xin-Xin
    Chen, Zhen-Yu
    ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS, 2022, 54
  • [39] Application advances of deep learning methods for de novo drug design and molecular dynamics simulation
    Bai, Qifeng
    Liu, Shuo
    Tian, Yanan
    Xu, Tingyang
    Banegas-Luna, Antonio Jesus
    Perez-Sanchez, Horacio
    Huang, Junzhou
    Liu, Huanxiang
    Yao, Xiaojun
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2022, 12 (03)
  • [40] De novo drug design framework based on mathematical programming method and deep learning model
    Zhao, Yujing
    Liu, Qilei
    Wu, Xinyuan
    Zhang, Lei
    Du, Jian
    Meng, Qingwei
    AICHE JOURNAL, 2022, 68 (09)