Real interpolation of variable martingale Hardy spaces and BMO spaces

被引:0
作者
Jianzhong Lu
Ferenc Weisz
Dejian Zhou
机构
[1] Central South University,School of Mathematics and Statistics
[2] Eötvös L. University,Department of Numerical Analysis
来源
Banach Journal of Mathematical Analysis | 2023年 / 17卷
关键词
Variable exponent Lebesgue spaces; Martingale Hardy spaces; BMO spaces; Real interpolation; 60G42; 60G46;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we mainly consider the real interpolation spaces for variable Lebesgue spaces defined by the decreasing rearrangement function and for the corresponding martingale Hardy spaces. Let 0<q≤∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<q\le \infty $$\end{document} and 0<θ<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\theta <1$$\end{document}. Our three main results are the following: (Lp(·)(Rn),L∞(Rn))θ,q=Lp(·)/(1-θ),q(Rn),(Hp(·)s(Ω),H∞s(Ω))θ,q=Hp(·)/(1-θ),qs(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}{} & {} ({\mathcal {L}}_{p(\cdot )}({\mathbb {R}}^n),L_{\infty }({\mathbb {R}}^n))_{\theta ,q}={\mathcal {L}}_{{p(\cdot )}/(1-\theta ),q}({\mathbb {R}}^n),\\{} & {} ({\mathcal {H}}_{p(\cdot )}^s(\Omega ),H_{\infty }^s(\Omega ))_{\theta ,q}={\mathcal {H}}_{{p(\cdot )}/(1-\theta ),q}^s(\Omega ) \end{aligned}$$\end{document}and (Hp(·)s(Ω),BMO2(Ω))θ,q=Hp(·)/(1-θ),qs(Ω),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} ({\mathcal {H}}_{p(\cdot )}^s(\Omega ),BMO_2(\Omega ))_{\theta ,q}={\mathcal {H}}_{{p(\cdot )}/(1- \theta ),q}^s(\Omega ), \end{aligned}$$\end{document}where the variable exponent p(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot )$$\end{document} is a measurable function.
引用
收藏
相关论文
共 50 条
[1]  
Aoyama H(2009)Lebesgue spaces with variable exponent on a probability space Hiroshima Math. J. 39 207-216
[2]  
Diening L(2007)Hardy inequality in variable exponent Lebesgue spaces Fract. Calc. Appl. Anal. 10 1-18
[3]  
Samko S(2008)Fractional, maximal and singular operators in variable exponent Lorentz spaces Fract. Calc. Appl. Anal. 11 407-420
[4]  
Ephremidze L(1974)Interpolation between Trans. Am. Math. Soc. 191 75-81
[5]  
Kokilashvili V(2015) spaces: the real method Fract. Calc. Appl. Anal. 18 1128-1145
[6]  
Samko S(2014)Fractional integral on martingale Hardy spaces with variable exponents Q. J. Math. 65 985-1009
[7]  
Fefferman C(2020)Atomic decompositions, dual spaces and interpolations of martingale Hardy–Lorentz–Karamata spaces J. Math. Anal. Appl. 491 124267-478
[8]  
Rivière N(2020)Real interpolation for variable martingale Hardy spaces Dissertation. Math. 550 67-770
[9]  
Sagher Y(2021)Variable martingale Hardy spaces and their applications in Fourier analysis Banach J. Math. Anal. 15 31-349
[10]  
Hao Z(2022)Dual spaces for variable martingale Lorentz–Hardy spaces Proc. Roy. Soc. Edinburgh Sect. A 152 450-954