Axisymmetric self-similar finite-time singularity solution of the Euler equations

被引:0
作者
Rodrigo Cádiz
Diego Martínez-Argüello
Sergio Rica
机构
[1] Pontificia Universidad Católica de Chile,Instituto de Física
来源
Advances in Continuous and Discrete Models | / 2023卷
关键词
Euler equations; Finite-time singularity; Self-similarity;
D O I
暂无
中图分类号
学科分类号
摘要
Self-similar finite-time singularity solutions of the axisymmetric Euler equations in an infinite system with a swirl are provided. Using the Elgindi approximation of the Biot–Savart kernel for the velocity in terms of vorticity, we show that an axisymmetric incompressible and inviscid flow presents a self-similar finite-time singularity of second specie, with a critical exponent ν. Contrary to the recent findings by Hou and collaborators, the current singularity solution occurs at the origin of the coordinate system, not at the system’s boundaries or on an annular rim at a finite distance. Finally, assisted by a numerical calculation, we sketch an approximate solution and find the respective values of ν. These solutions may be a starting point for rigorous mathematical proofs.
引用
收藏
相关论文
共 31 条
[1]  
Gibbon J.D.(2008)The three-dimensional Euler equations: where do we stand? Physica D 237 1894-1904
[2]  
Luo G.(2014)Potentially singular solutions of the 3D axisymmetric Euler equations Proc. Natl. Acad. Sci. USA 111 12968-12973
[3]  
Hou T.Y.(2020)A fluid mechanic’s analysis of the teacup singularity Proc. R. Soc. A, Math. Phys. Eng. Sci. 476 407-411
[4]  
Barkley D.(2019)Finite-time singularity formation for strong solutions to the axi-symmetric 3D Euler equations Ann. PDE 5 184-197
[5]  
Elgindi T.M.(1995)Singularité dans l’évolution du fluide parfait C. R. Math. Acad. Sci. Paris 321 342-356
[6]  
Jeong I.-J.(2018)On the self-similar solution to the Euler equations for an incompressible fluid in three dimensions C. R., Méc. 346 647-727
[7]  
Pomeau Y.(2019)A case of strong non linearity: intermittency in highly turbulent flows C. R., Méc. 347 3511-3514
[8]  
Pomeau Y.(2023)Singularities in turbulent flows: how to observe them? Phys. D, Nonlinear Phenom. 443 1511-1514
[9]  
Pomeau Y.(2020)Finite-time localized singularities as a mechanism for turbulent dissipation Phys. Rev. Fluids 5 341-359
[10]  
Le Berre M.(2023)Two dimensional singularity turbulence Phys. D, Nonlinear Phenom. 443 52-62