The Central Limit Theorem for Markov Chains with General State Space

被引:0
作者
Nagaev S.V. [1 ]
机构
[1] Sobolev Institute of Mathematics, Novosibirsk
关键词
central limit theorem; kernel of an operator; Markov chain; resolvent; space of complex-valued measures; spectral method; transition function;
D O I
10.3103/S1055134418040028
中图分类号
学科分类号
摘要
We consider a Markov chain with general state space and an embedded Markov chain sampled at the times of successive returns to a subsetA0 of the state space.We assume that the latter chain is uniformly ergodic but the originalMarkov chain need not possess this property.We develop amodification of the spectralmethod and utilize it in proving the central limit theorem for theMarkov chain under consideration. © 2018, Allerton Press, Inc.
引用
收藏
页码:265 / 302
页数:37
相关论文
共 32 条
[1]  
Athreya K.B., Ney P., A new approach to the limit theory of recurrent Markov chains, Trans. Amer. Math. Soc., 245, (1978)
[2]  
Bolthausen E., The Berry–Esseen theorem for functionals of discrete Markov chains, Z. Wahrscheinlichkeitstheor. Verw. Geb., 54, (1980)
[3]  
Bolthausen E., The Berry–Esseen theorem for strongly mixing Harris recurrent Markov chains, Z. Wahrscheinlichkeitstheor. Verw. Geb., 60, (1982)
[4]  
Chung K.L., Markov Chains with Stationary Transition Probabilities, (1967)
[5]  
Cogburn R., The central limit theorem for Markov processes, Proc. 6th Berkeley Sympos. Math. Statist. Probab. Vol. 2, 485, (1972)
[6]  
Doeblin W., Sur deux problèmes deM. Kolmogoroff concernant les chaînes dénombrables, Bull. Soc. Math. France, 66, (1938)
[7]  
Guivarc'h Y., Application d’un théorème limite local àla transcience et àla recurrence de marches de Markov, Théorie du Potentiel. Proc. Colloq. J. Deny, (1984)
[8]  
Guivarc'h Y., Hardy J., Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d’Anosov, Ann. Inst. H. Poincaré. Probab. Statist., 24, (1988)
[9]  
Guivarc'h Y., Le Page E., On spectral properties of a family of transfer operators and convergence to stable laws for affine random walks, Ergodic Theory Dynam. Systems, 28, (2008)
[10]  
Harris T.E., The existence of stationary measures for certain Markov processes, Proc. 3rd Berkeley Sympos. Math. Statist. Probab. Vol. 2, 113, (1956)