Automatic continuity over Moore groups

被引:0
作者
Volker Runde
机构
[1] Universität des Saarlandes,Fachbereich 9 Mathematik
来源
Monatshefte für Mathematik | 1997年 / 123卷
关键词
46H40 (primary); 22D15; 43A20; Automatic continuity; Moore groups;
D O I
暂无
中图分类号
学科分类号
摘要
LetG be a Moore group, letB be a Banach algebra, and let θ:L1(G)→B be a homomorphism. We show that θ is continuous if and only if its restriction to the center ofL1(G) is continuous. As a consequence, we obtain that (i) every homomorphism fromL1(G) orC*(G) onto a dense subalgebra of a semisimple Banach algebra, and (ii) every epimorphism fromC*(G) onto a Banach algebra is automatically continuous.
引用
收藏
页码:245 / 252
页数:7
相关论文
共 27 条
  • [1] Bade W. G.(1960)Homomorphisms of commutative Banach algebras Amer. J. Math. 82 589-608
  • [2] Curtis P. C.(1983)Ditkin's theorem and [SIN]-groups Mh. Math. 96 1-15
  • [3] Barnes B. A.(1978)Automatic continuity: a survey Bull. London Math. Soc. 10 129-183
  • [4] Dales H. G.(1967)On central topological groups Trans. Amer. Math. Soc. 127 317-340
  • [5] Grosser S.(1971)Compactness conditions in topological groups J. reine angew. Math. 246 1-40
  • [6] Moskowitz M.(1979)The generalized Wiener theorem for groups with finite dimensional representations J. Funct. Anal. 31 13-23
  • [7] Grosser S.(1974)Projections and approximate identities for ideals in group algebras Trans. Amer. Math. Soc. 175 469-482
  • [8] Moskowitz M.(1974)Harmonic analysis and centers of group algebras Trans Amer. Math. Soc. 195 147-163
  • [9] Hauenschild W.(1972)Groups with finite dimensional irreducible representations Trans. Amer. Math. Soc. 166 401-410
  • [10] Kaniuth E.(1972)The Trans. Amer. Math. Soc. 163 277-310