Numerical modelling transient current in the time-of-flight experiment with time-fractional advection-diffusion equations

被引:0
作者
L. F. Morgado
M. L. Morgado
机构
[1] Instituto Superior Técnico,Instituto de Telecomunicações
[2] University of Trás-os-Montes e Alto Douro,Department of Physics
[3] UTAD,CM
[4] University of Trás-os-Montes e Alto Douro,UTAD, Department of Mathematics
[5] UTAD,undefined
来源
Journal of Mathematical Chemistry | 2015年 / 53卷
关键词
Fractional differential equations; Caputo derivative ; Advection-diffusion equation; Time of flight; Organic semiconductors; 35R11; 65M06; 65M12;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we report the development of an implicit finite difference numerical method for the one space dimension time-fractional advection-diffusion equation, on a bounded domain, to model the transient electrical current of the time of flight experiment of disordered (e.g. organic) semiconductors. Some numerical experiments and simulation of experimental data are carried out showing that the presented model describes accurately the transient electrical current.
引用
收藏
页码:958 / 973
页数:15
相关论文
共 17 条
[1]  
Scher H(1975)Anomalous transit-time dispersion in amorphous solids Phys. Rev. B 12 2455-2477
[2]  
Montroll E(2011)Analytic solution of the fractional advection-diffusion equation for the time-of-flight experiment in a finite geometry Phys. Rev. E 84 041138-431
[3]  
Philippa BW(2004)Numerical solution of fractional advection-dispersion equation J. Hydraul. Eng. 130 422-4878
[4]  
White RD(2012)An efficient difference scheme for time fractional advection dispersion equations Appl. Math. Sci. 6 4869-77
[5]  
Robson RE(2004)Finite difference approximations for fractional advection-dispersion flow equations J. Comput. Appl. Math. 172 65-2640
[6]  
Deng Z(2010)Spectral regularization method for a cauchy problem of the time fractional advection dispersion equation J. Comput. Appl. Math. 233 2631-99
[7]  
Singh VP(2006)Implicit difference approximation for the time fractional diffusion equation J. Appl. Math. Comput. 22 87-undefined
[8]  
Asce F(undefined)undefined undefined undefined undefined-undefined
[9]  
Bengtsson L(undefined)undefined undefined undefined undefined-undefined
[10]  
Karatay I(undefined)undefined undefined undefined undefined-undefined