Distributed Deep Learning-based Offloading for Mobile Edge Computing Networks

被引:0
|
作者
Liang Huang
Xu Feng
Anqi Feng
Yupin Huang
Li Ping Qian
机构
[1] Zhejiang University of Technology,College of Information Engineering
来源
关键词
Mobile edge computing; Offloading; Deep learning; Distributed learning;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies mobile edge computing (MEC) networks where multiple wireless devices (WDs) choose to offload their computation tasks to an edge server. To conserve energy and maintain quality of service for WDs, the optimization of joint offloading decision and bandwidth allocation is formulated as a mixed integer programming problem. However, the problem is computationally limited by the curse of dimensionality, which cannot be solved by general optimization tools in an effective and efficient way, especially for large-scale WDs. In this paper, we propose a distributed deep learning-based offloading (DDLO) algorithm for MEC networks, where multiple parallel DNNs are used to generate offloading decisions. We adopt a shared replay memory to store newly generated offloading decisions which are further to train and improve all DNNs. Extensive numerical results show that the proposed DDLO algorithm can generate near-optimal offloading decisions in less than one second.
引用
收藏
页码:1123 / 1130
页数:7
相关论文
共 50 条
  • [1] Distributed Deep Learning-based Offloading for Mobile Edge Computing Networks
    Huang, Liang
    Feng, Xu
    Feng, Anqi
    Huang, Yupin
    Qian, Li Ping
    MOBILE NETWORKS & APPLICATIONS, 2022, 27 (03): : 1123 - 1130
  • [2] Deep Learning-Based Dynamic Computation Task Offloading for Mobile Edge Computing Networks
    Yang, Shicheng
    Lee, Gongwei
    Huang, Liang
    SENSORS, 2022, 22 (11)
  • [3] Deep reinforcement learning-based online task offloading in mobile edge computing networks
    Wu, Haixing
    Geng, Jingwei
    Bai, Xiaojun
    Jin, Shunfu
    INFORMATION SCIENCES, 2024, 654
  • [4] Deep Reinforcement Learning-based computation offloading and distributed edge service caching for Mobile Edge Computing
    Xie, Mande
    Ye, Jiefeng
    Zhang, Guoping
    Ni, Xueping
    COMPUTER NETWORKS, 2024, 250
  • [5] Distributed Deep Learning-based Task Offloading for UAV-enabled Mobile Edge Computing
    Mukherjee, Mithun
    Kumar, Vikas
    Lat, Ankit
    Guo, Mian
    Matam, Rakesh
    Lv, Yunrong
    IEEE INFOCOM 2020 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2020, : 1208 - 1212
  • [6] Learning-Based Task Offloading for Mobile Edge Computing
    Garaali, Rim
    Chaieb, Cirine
    Ajib, Wessam
    Afif, Meriem
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 1659 - 1664
  • [7] Deep Reinforcement Learning-Based Offloading Decision Optimization in Mobile Edge Computing
    Zhang, Hao
    Wu, Wenjun
    Wang, Chaoyi
    Li, Meng
    Yang, Ruizhe
    2019 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2019,
  • [8] Deep reinforcement learning-based dynamical task offloading for mobile edge computing
    Xie, Bo
    Cui, Haixia
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [9] Deep reinforcement learning-based low-latency task offloading for mobile-edge computing networks
    Yang, Wentao
    Liu, Zhibin
    Liu, Xiaowu
    Ma, Yuefeng
    APPLIED SOFT COMPUTING, 2024, 166
  • [10] Deep Learning-Based Task Offloading for Vehicular Edge Computing
    Zeng, Feng
    Liu, Chengsheng
    Tangjiang, Junzhe
    Li, Wenjia
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, WASA 2021, PT III, 2021, 12939 : 291 - 298