Mathematical study of the influence of canine distemper virus on tigers: an eco-epidemic dynamics with incubation delay

被引:0
作者
Jyoti Gupta
Joydip Dhar
Poonam Sinha
机构
[1] Jiwaji University,S.M.S. Government Model Science College
[2] ABV-Indian Institute of Information Technology and Management,undefined
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2023年 / 72卷
关键词
Stability; Delay; CDV; Hopf bifurcation; 92D30; 92D40; 37Gxx; 34DXX;
D O I
暂无
中图分类号
学科分类号
摘要
The decreasing tiger population in the world ecosystem is a threat to nature conservation. Canine distemper virus (CDV) is a deadly virus found in the tiger worldwide, one of the vital causes of their extinction. This paper figure outs the influence of CDV on tiger populations. We have developed and studied a delayed eco-epidemiological tiger-dog/wild carnivores predator-prey model with CDV infection in tiger and dog/wild carnivores considering incubation delay τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau$$\end{document} for CDV infected dogs and wild carnivores. We studied the existence, boundedness, stability, and bifurcation of the solutions. Our analysis shows that the coexistence equilibrium is locally stable for all incubation delay τ>τ+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau >\tau ^+$$\end{document}. The system switches its stability as incubation delay crosses its critical value τ=τ+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau =\tau ^+$$\end{document}, perceives oscillations, and Hopf bifurcation occurs in the system for all τ<τ+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau <\tau ^+$$\end{document}. Further, the disease-free equilibrium also shows Hopf bifurcation for predator’s mortality rate threshold value μ2=μ2∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _2=\mu _2^*$$\end{document}. We have performed a sensitivity analysis and identified the impact of the system’s parameters on reproduction number through their sensitivity indices. Finally, numerical simulation verifies the analytical finding that the significant incubation delay causes stability in the system. We can get a disease-free environment and save tigers by regulating the predation rate of healthy prey(dog/wild carnivores).
引用
收藏
页码:117 / 139
页数:22
相关论文
共 99 条
[1]  
Beineke A(2015)Cross-species transmission of canin distemper virus-an update One Health 1 49-59
[2]  
Baumgartner W(2013)An eco-epidemic model with diseased predators and prey group defence Simul. Model. Pract. Theory 34 144-155
[3]  
Wohlsein P(2015)A prey-predator model with infection in both prey and predator Filomate 29 1753-1767
[4]  
Beluisi S(2015)A delayed eco-epidemiological system with infected prey and predator subject to weak allee effect Math. Biosci. 263 198-208
[5]  
Venturino E(2015)Competition and facilitation between a disease and a predator in a stunted prey population PLoS ONE 10 e0132251-80
[6]  
Bera S(2011)A predator prey mathematical model with both the populations affected by diseases Ecol. Complex. 8 68-1809
[7]  
Maiti A(2014)Estimating the potential impact of canine distemper virus on the amure tiger population(pathera tigirs altaica)in russia PloS ONE 9 e110811-293
[8]  
Samata G(2007)An eco-epidemiological model with disease in predator: the ratio dependent case Math. Models Appl. Sci. 30 1791-268
[9]  
Biswas S(2005)Perspective on basic reproduction ratio J. R. Soc. Interf. 2 281-60
[10]  
Sasmal S(2004)A predator-prey model with infected prey Theor. Popul. Biol. 66 259-298