Dynamics of two families of meromorphic functions involving hyperbolic cosine function

被引:0
作者
Madhusudan Bera
M. Guru Prem Prasad
机构
[1] Kalinga Institute of Industrial Technology (KIIT) Deemed to be University,Department of Mathematics, School of Applied Sciences
[2] Indian Institute of Technology Guwahati,Department of Mathematics
来源
Indian Journal of Pure and Applied Mathematics | 2021年 / 52卷
关键词
Fatou sets; Julia sets; Transcendental meromorphic functions; 37F45; 37F50; 37F10; 37C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, one-parameter families F≡fλ(z)=λcoshz+1coshzforz∈C:λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}\equiv \left\{ f_{\lambda }(z)=\lambda \left( \cosh z+\frac{1}{\cosh z}\right) \;\text{ for }\; z\in {\mathbb {C}}: \lambda >0\right\} $$\end{document} and G≡gλ(z)=λcoshz-1coshzforz∈C:λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}\equiv \left\{ g_{\lambda }(z)=\lambda \left( \cosh z-\frac{1}{\cosh z}\right) \;\text{ for }\; z\in {\mathbb {C}}: \lambda >0\right\} $$\end{document} are considered and the dynamics of functions fλ∈F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{\lambda }\in {\mathcal {F}}$$\end{document} and gλ∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\lambda }\in {\mathcal {G}}$$\end{document} are investigated. It is shown that both the functions fλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{\lambda }$$\end{document} and gλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\lambda }$$\end{document} have finite number of singular values and the origin is always an attracting fixed point of gλ(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\lambda }(z)$$\end{document}. The dynamics of fλ(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{\lambda }(z)$$\end{document} and gλ(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\lambda }(z)$$\end{document} on the extended complex plane are studied by investigating the nature of the real fixed points and the singular values of fλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{\lambda }$$\end{document} and gλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\lambda }$$\end{document}. It is shown that a bifurcation and chaotic burst occur at a certain parameter value of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} for the functions fλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{\lambda }$$\end{document} in the family F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} but there is no bifurcation in the family G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}$$\end{document}.
引用
收藏
页码:384 / 394
页数:10
相关论文
共 6 条
  • [1] Bergweiler W(1993)Iteration of meromorphic functions Bull. Amer. Math. Soc. 29 151-188
  • [2] Devaney RL(1984)Bursts into chaos Phys. Lett. A 104 385-387
  • [3] Devaney RL(1991)The exploding exponential and other chaotic bursts in complex dynamics Amer. Math. Monthly 98 217-233
  • [4] Durkin MB(1992)Dynamical properties of some classes of entire functions Ann. Inst. Fourier (Grenoble) 42 989-1020
  • [5] Eremenko AE(undefined)undefined undefined undefined undefined-undefined
  • [6] Lyubich MY(undefined)undefined undefined undefined undefined-undefined