The Blow-Up of Solutions for a Class of Semi-linear Equations with p-Laplacian Viscoelastic Term Under Positive Initial Energy

被引:0
作者
Xiulan Wu
Xiaoxin Yang
Yaxin Zhao
机构
[1] Changchun University of Science and Technology,School of Mathematics and Statistics
来源
Mediterranean Journal of Mathematics | 2023年 / 20卷
关键词
Semi-linear equations; p-Laplacian; viscoelastic term; blow up; positive initial energy; 35B40; 35B44; 35J61;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with homogeneous Dirichlet boundary value problem to a class of semi-linear equations with p-Laplacian viscoelastic term ∂u∂t-Δu+∫0tg(t-s)Δpu(x,s)ds=uq(x)-2u,x∈Ω,t≥0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{\partial u}{\partial t}-\Delta u+\int _{0}^{t}g(t-s)\Delta _{p}u(x,s){{\textrm{d}}}s=\left| u\right| ^{q(x)-2}u,\quad x\in \Omega ,\ t\ge 0, \end{aligned}$$\end{document}the bounded domain Ω⊂Rn(n≥3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset R^{n}~(n\ge 3)$$\end{document} with a smooth boundary. We prove that the weak solutions of the above problems blow up in finite time for all 2k<q-<q+<p<2nn-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2k<q^-<q^+<p<\frac{2n}{n-2}$$\end{document} (k is defined in (2.5)), when the initial energy is positive and the function g satisfies suitable conditions. This result generalized and improved the result by Messaoudi (Abstr Appl Anal 2005(2):87–94, 2005).
引用
收藏
相关论文
共 29 条
  • [1] Messaoudi SA(2005)Blow-up of solutions of a semilinear heat equation with a memory term Abstr. Appl. Anal. 2005 87-94
  • [2] Yin HM(1991)On parabolic Volterra equations in several space dimensions SIAM J. Math. Anal. 22 1723-1737
  • [3] Yin HM(2019)Weak and classical solutions of some Volterra integro-differential equations Commun. Partial Differ. Equ. 17 1369-1385
  • [4] Antonsev S(2016)On the evolution p-Laplacian with nonlocal memory Nonlinear Anal. 2016 31-54
  • [5] Shmarev S(1985)A Commun. Pure Appl. Math. 38 291-295
  • [6] Simsen J(1989) blow-up estimate for a nonlinear heat equation Commun. Pure Appl. Math. 1989 845-884
  • [7] Simsen MS(1987)Nondegeneracy of blow up for semilinear heat equations Indiana Univ. Math. J. 1987 425-447
  • [8] Weissler FB(1985)Characterizing blow up using similarity variables Commun. Pure Appl. Math. 1985 297-319
  • [9] Giga Y(1985)Asymptotic self-similar blow up of semilinear heat equations Indiana Univ. Math. J. 1985 425-477
  • [10] Kohn RV(2009)Blow up of positive solutions of semilinear heat equations Nolinear Anal. TMA 2009 1049-1058