Optimal convex combination bounds of geometric and Neuman means for Toader-type mean

被引:0
作者
Yue-Ying Yang
Wei-Mao Qian
机构
[1] Huzhou Vocational & Technical College,School of Mechanical and Electrical Engineering
[2] Huzhou Broadcast and TV University,School of Distance Education
来源
Journal of Inequalities and Applications | / 2017卷
关键词
Toader mean; geometric mean; Neuman mean; 26E60; 33E05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove that the double inequalities αNQA(a,b)+(1−α)G(a,b)<TD[A(a,b),G(a,b)]<βNQA(a,b)+(1−β)G(a,b),λNAQ(a,b)+(1−λ)G(a,b)<TD[A(a,b),G(a,b)]<μNAQ(a,b)+(1−μ)G(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned}& {\alpha }N_{QA}(a,b)+({1-\alpha })G(a,b)< TD \bigl[A(a,b),G(a,b) \bigr]< {\beta }N_{QA}(a,b)+({1-\beta })G(a,b), \\& {\lambda }N_{AQ}(a,b)+({1-\lambda })G(a,b)< TD \bigl[A(a,b),G(a,b) \bigr]< {\mu }N_{AQ}(a,b)+({1-\mu })G(a,b) \end{aligned}$$ \end{document} hold for all a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a,b>0$\end{document} with a≠b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a\neq b$\end{document} if and only if α≤3/8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \leq 3/8$\end{document}, β≥4/[π(log(1+2)+2)]=0.5546⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta \geq 4/ [\pi ( \log (1+\sqrt{2})+\sqrt{2}) ]=0.5546 \cdots $\end{document} , λ≤3/10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda \leq 3/10$\end{document} and μ≥8/[π(π+2)]=0.4952⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu \geq 8/ [\pi (\pi +2) ]=0.4952 \cdots $\end{document} , where TD(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$TD(a,b)$\end{document}, G(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G(a,b)$\end{document}, A(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A(a,b)$\end{document} and NQA(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N_{QA}(a,b)$\end{document}, NAQ(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N_{AQ}(a,b)$\end{document} are the Toader, geometric, arithmetic and two Neuman means of a and b, respectively.
引用
收藏
相关论文
共 112 条
  • [1] Toader GH(1998)Some mean values related to the arithmetic-geometric mean J. Math. Anal. Appl. 218 358-368
  • [2] Neuman E(2003)On the Schwab-Borchardt mean Math. Pannon. 14 253-266
  • [3] Sándor J(2006)On the Schwab-Borchardt mean II Math. Pannon. 17 49-59
  • [4] Neuman E(2011)Inequalities for the Schwab-Borchardt mean and their applications J. Math. Inequal. 5 601-609
  • [5] Sándor J(2014)On a new bivariate mean Aequ. Math. 88 277-289
  • [6] Neuman E(2003)Bounds for symmetric elliptic integrals J. Approx. Theory 122 249-259
  • [7] Neuman E(2007)Inequalities and bounds for elliptic integrals J. Approx. Theory 146 212-226
  • [8] Neuman E(2011)Sharp generalized Seiffert mean bounds for Toader mean Abstr. Appl. Anal. 2011 223-229
  • [9] Kazi H(2012)Inequalities between arithmetic-geometric, Gini, and Toader means Abstr. Appl. Anal. 2012 41-51
  • [10] Neuman E(2012)Optimal Lehmer mean bounds for the Toader mean Results Math. 61 775-780