Universal Adjacency Spectrum of the Looped Zero Divisor Graph of Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_n$$\end{document}

被引:0
作者
Saraswati Bajaj
Pratima Panigrahi
机构
[1] Indian Institute of Technology Kharagpur,Department of Mathematics
关键词
Looped zero divisor graph; Universal adjacency matrix; Spectrum; Eigenvector; 05C25; 05C50; 15A18;
D O I
10.1007/s40840-022-01361-6
中图分类号
学科分类号
摘要
For a finite commutative ring R with unity, the looped zero divisor graph Γ˚(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathring{\Gamma }(R)$$\end{document} is an undirected graph with all non-zero zero divisors of R as vertices and two vertices (not necessarily distinct) u and v are adjacent if and only if uv=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$uv=0$$\end{document}. The universal adjacency matrix of a looped graph G˚\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathring{G}$$\end{document} is U(G˚)=αA+βD+γI+ηJ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(\mathring{G})=\alpha A+\beta D+\gamma I+\eta J$$\end{document}, where α(≠0),β,γ,η∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (\ne 0),\beta ,\gamma ,\eta \in \mathbb {R}$$\end{document}, I is the identity matrix, J is the all one matrix, A is the adjacency and D is the degree diagonal matrix of G˚\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathring{G}$$\end{document}. For every non-prime integer n with ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document} number of proper divisors, we show that ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document} eigenpairs of U(Γ˚(Zn))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(\mathring{\Gamma }(\mathbb {Z}_n))$$\end{document} can be obtained from a symmetric matrix WU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {W}_U$$\end{document} of order ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document}, and determine explicitly all the remaining eigenpairs of U(Γ˚(Zn))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(\mathring{\Gamma }(\mathbb {Z}_n))$$\end{document}. As a consequence, we also study the adjacency, Seidel, Laplacian and signless Laplacian spectra of Γ˚(Zn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathring{\Gamma }(\mathbb {Z}_n)$$\end{document}. Moreover, for n=pm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=p^m$$\end{document}, a prime p and integer m≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 2$$\end{document}, we determine the characteristic polynomial of corresponding WU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {W}_U$$\end{document} matrix (except for η+α≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta +\alpha \ne 0$$\end{document} with η≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta \ne 0$$\end{document}).
引用
收藏
页码:2017 / 2039
页数:22
相关论文
共 19 条
[1]  
Anderson DF(1999)The zero-divisor graph of a commutative ring J. Algebra 217 434-447
[2]  
Livingston PS(2009)Zero-divisor ideals and realizable zero-divisor graphs Involve 2 17-27
[3]  
Axtell M(2022)On the adjacency spectrum of zero divisor graph of ring J. Algebra Appl. 584 267-286
[4]  
Stickles J(2020)Laplacian eigenvalues of the zero divisor graph of the ring Linear Algebra Appl. 435 2520-2529
[5]  
Trampbachls W(2011)Universal adjacency matrices with two eigenvalues Linear Algebra Appl. 215 32-47
[6]  
Bajaj S(1997)On the solution of a second order linear homogneous difference equation with variable coefficients J. Math. Anal. Appl. 54 787-802
[7]  
Panigrahi P(2021)Eigenvalues of zero-divisor graphs of finite commutative rings J. Algebraic Combin. 577 21-40
[8]  
Chattopadhyay S(2019)On the spectrum of an equitable quotient matrix and its application Linear Algebra Appl. 8 753-761
[9]  
Patra KL(2015)Adjacency matrices of zero-divisor graphs of integers modulo Involve undefined undefined-undefined
[10]  
Sahoo BK(undefined)undefined undefined undefined undefined-undefined