On two conjectures concerning trees with maximal inverse sum indeg index

被引:0
作者
Wenshui Lin
Peifang Fu
Guodong Zhang
Peng Hu
Yikai Wang
机构
[1] Xiamen University,School of Informatics
来源
Computational and Applied Mathematics | 2022年 / 41卷
关键词
Inverse sum indeg index; Trees; Extremal graphs; Greedy tree; 05C09; 05C07; 05C05;
D O I
暂无
中图分类号
学科分类号
摘要
The inverse sum indeg (ISI) index of a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V, E)$$\end{document} is defined as ISI(G)=∑vivj∈Edidj/(di+dj)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ISI(G) = \sum _{v_i v_j \in E} d_i d_j/(d_i + d_j)$$\end{document}, where V={v0,v1,…,vn-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V=\{v_0, v_1, \ldots , v_{n-1}\}$$\end{document} and E are, respectively, the vertex set and edge set of G, and di\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_i$$\end{document} is the degree of vertex vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_i$$\end{document}. This topological index was shown to be well correlated with the total surface area of octane isomers. However, the problem of characterizing trees with maximal ISI index (optimal trees, for convenience) appears to be difficult. Let T be an n-vertex optimal tree. Recently, Chen et al. (Appl Math Comput 392:125731, 2021) proved some structural features of T, and proposed some problems and conjectures for further research. In particular, they conjectured that ISI(T)<2n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ISI(T) < 2n-2$$\end{document}, and T has no vertices of degree 2 if n≥20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 20$$\end{document}. In this paper, we confirm these two conjectures.
引用
收藏
相关论文
共 30 条
  • [1] An M(2018)Some results on the inverse sum indeg index of a graph Inf Process Lett 134 42-46
  • [2] Xiong L(2008)Graphs with given degree sequence and maximal spectral radius Electron J Combin 15 R119-9
  • [3] Bıyıkoğlu T(2018)The inverse sum indeg index of graphs with some given parameters Discrete Math Algorithms Appl 10 1-195
  • [4] Leydold J(2021)On connected graphs and trees with maximal inverse sum indeg index Appl Math Comput 392 125731-134
  • [5] Chen H(2017)Sharp bounds on the inverse sum indeg index Discrete Appl Math 217 185-562
  • [6] Deng H(2019)Linear and non-linear inequalities on the inverse sum indeg index Discrete Appl Math 258 123-38
  • [7] Chen X(2020)Lower bounds for inverse sum indeg index of graphs Kragujevac J Math 44 551-578
  • [8] Li X(2021)A note on chemical trees with maximal inverse sum indeg index MATCH Commun Math Comput Chem 86 29-212
  • [9] Lin W(2013)On the minimal ABC index of connected graphs with given degree sequence MATCH Commun Math Comput Chem 69 571-2654
  • [10] Falahati-Nezhad F(2015)On the inverse sum indeg index Discrete Appl Math 184 202-undefined