Vector quantile regression and optimal transport, from theory to numerics

被引:0
|
作者
Guillaume Carlier
Victor Chernozhukov
Gwendoline De Bie
Alfred Galichon
机构
[1] Université Paris IX Dauphine,CEREMADE, UMR CNRS 7534, PSL
[2] MOKAPLAN Inria,Department of Economics
[3] MIT,Economics and Mathematics Departments
[4] DMA,undefined
[5] ENS,undefined
[6] New York University,undefined
来源
Empirical Economics | 2022年 / 62卷
关键词
Vector quantile regression; Optimal transport with mean independence constraints; Latent factors; Entropic regularization; C51; C60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first revisit the Koenker and Bassett variational approach to (univariate) quantile regression, emphasizing its link with latent factor representations and correlation maximization problems. We then review the multivariate extension due to Carlier et al. (Ann Statist 44(3):1165–92, 2016,; J Multivariate Anal 161:96–102, 2017) which relates vector quantile regression to an optimal transport problem with mean independence constraints. We introduce an entropic regularization of this problem, implement a gradient descent numerical method and illustrate its feasibility on univariate and bivariate examples.
引用
收藏
页码:35 / 62
页数:27
相关论文
共 50 条
  • [41] Composite quantile regression and the oracle model selection theory
    Zou, Hui
    Yuan, Ming
    ANNALS OF STATISTICS, 2008, 36 (03): : 1108 - 1126
  • [42] Multiple-output quantile regression through optimal quantization
    Charlier, Isabelle
    Paindaveine, Davy
    Saracco, Jerome
    SCANDINAVIAN JOURNAL OF STATISTICS, 2020, 47 (01) : 250 - 278
  • [43] Return forecasts and optimal portfolio construction: a quantile regression approach
    Ma, Lingjie
    Pohlman, Larry
    EUROPEAN JOURNAL OF FINANCE, 2008, 14 (05): : 409 - 425
  • [44] Optimal subsampling algorithms for composite quantile regression in massive data
    Jin, Jun
    Liu, Shuangzhe
    Ma, Tiefeng
    STATISTICS, 2023, 57 (04) : 811 - 843
  • [45] Optimal subsampling for composite quantile regression model in massive data
    Shao, Yujing
    Wang, Lei
    STATISTICAL PAPERS, 2022, 63 (04) : 1139 - 1161
  • [46] Optimal subsampling for composite quantile regression model in massive data
    Yujing Shao
    Lei Wang
    Statistical Papers, 2022, 63 : 1139 - 1161
  • [47] Optimal transport of vector measures
    Krzysztof J. Ciosmak
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [48] Optimal transport of vector measures
    Ciosmak, Krzysztof J.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (06)
  • [49] Robust support vector quantile regression with truncated pinball loss (RSVQR)
    Barenya Bikash Hazarika
    Deepak Gupta
    Parashjyoti Borah
    Computational and Applied Mathematics, 2023, 42
  • [50] Deep support vector quantile regression with non-crossing constraints
    Shin, Wooyoung
    Jung, Yoonsuh
    COMPUTATIONAL STATISTICS, 2023, 38 (04) : 1947 - 1976