Vector quantile regression and optimal transport, from theory to numerics

被引:0
|
作者
Guillaume Carlier
Victor Chernozhukov
Gwendoline De Bie
Alfred Galichon
机构
[1] Université Paris IX Dauphine,CEREMADE, UMR CNRS 7534, PSL
[2] MOKAPLAN Inria,Department of Economics
[3] MIT,Economics and Mathematics Departments
[4] DMA,undefined
[5] ENS,undefined
[6] New York University,undefined
来源
Empirical Economics | 2022年 / 62卷
关键词
Vector quantile regression; Optimal transport with mean independence constraints; Latent factors; Entropic regularization; C51; C60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first revisit the Koenker and Bassett variational approach to (univariate) quantile regression, emphasizing its link with latent factor representations and correlation maximization problems. We then review the multivariate extension due to Carlier et al. (Ann Statist 44(3):1165–92, 2016,; J Multivariate Anal 161:96–102, 2017) which relates vector quantile regression to an optimal transport problem with mean independence constraints. We introduce an entropic regularization of this problem, implement a gradient descent numerical method and illustrate its feasibility on univariate and bivariate examples.
引用
收藏
页码:35 / 62
页数:27
相关论文
共 50 条
  • [21] Quantile regression via vector generalized additive models
    Yee, TW
    STATISTICS IN MEDICINE, 2004, 23 (14) : 2295 - 2315
  • [22] Nonlinear feature selection for support vector quantile regression
    Ye, Ya-Fen
    Wang, Jie
    Chen, Wei-Jie
    NEURAL NETWORKS, 2025, 185
  • [23] Weighted quantile regression via support vector machine
    Xu, Qifa
    Zhang, Jinxiu
    Jiang, Cuixia
    Huang, Xue
    He, Yaoyao
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (13) : 5441 - 5451
  • [24] Joint quantile regression in vector-valued RKHSs
    Sangnier, Maxime
    Fercoq, Olivier
    d'Alche-Buc, Florence
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [25] A simple quantile regression via support vector machine
    Hwang, C
    Shim, J
    ADVANCES IN NATURAL COMPUTATION, PT 1, PROCEEDINGS, 2005, 3610 : 512 - 520
  • [26] MinMax Methods for Optimal Transport and Beyond: Regularization, Approximation and Numerics
    Aquino, Luca De Gennaro
    Eckstein, Stephan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [27] VECTOR AND MATRIX OPTIMAL MASS TRANSPORT: THEORY, ALGORITHM, AND APPLICATIONS
    Ryu, Ernest K.
    Chen, Yongxin
    Li, Wuchen
    Osher, Stanley
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (05): : A3675 - A3698
  • [28] General composite quantile regression: Theory and methods
    Wu, Yanke
    Tian, Maozai
    Tang, Man-Lai
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (09) : 2217 - 2236
  • [29] Distributed optimal subsampling for quantile regression with massive data
    Chao, Yue
    Ma, Xuejun
    Zhu, Boya
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2024, 233
  • [30] Optimal subsampling for composite quantile regression in big data
    Xiaohui Yuan
    Yong Li
    Xiaogang Dong
    Tianqing Liu
    Statistical Papers, 2022, 63 : 1649 - 1676