Vector quantile regression and optimal transport, from theory to numerics

被引:0
|
作者
Guillaume Carlier
Victor Chernozhukov
Gwendoline De Bie
Alfred Galichon
机构
[1] Université Paris IX Dauphine,CEREMADE, UMR CNRS 7534, PSL
[2] MOKAPLAN Inria,Department of Economics
[3] MIT,Economics and Mathematics Departments
[4] DMA,undefined
[5] ENS,undefined
[6] New York University,undefined
来源
Empirical Economics | 2022年 / 62卷
关键词
Vector quantile regression; Optimal transport with mean independence constraints; Latent factors; Entropic regularization; C51; C60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first revisit the Koenker and Bassett variational approach to (univariate) quantile regression, emphasizing its link with latent factor representations and correlation maximization problems. We then review the multivariate extension due to Carlier et al. (Ann Statist 44(3):1165–92, 2016,; J Multivariate Anal 161:96–102, 2017) which relates vector quantile regression to an optimal transport problem with mean independence constraints. We introduce an entropic regularization of this problem, implement a gradient descent numerical method and illustrate its feasibility on univariate and bivariate examples.
引用
收藏
页码:35 / 62
页数:27
相关论文
共 50 条
  • [1] Correction to: Vector quantile regression and optimal transport, from theory to numerics
    Guillaume Carlier
    Victor Chernozhukov
    Gwendoline De Bie
    Alfred Galichon
    Empirical Economics, 2022, 62 : 63 - 63
  • [2] Vector quantile regression and optimal transport, from theory to numerics (Aug, 10.1007/s00181-020-01919-y, 2020)
    Carlier, Guillaume
    Chernozhukov, Victor
    De Bie, Gwendoline
    Galichon, Alfred
    EMPIRICAL ECONOMICS, 2022, 62 (01) : 63 - 63
  • [3] VECTOR QUANTILE REGRESSION: AN OPTIMAL TRANSPORT APPROACH
    Carlier, Guillaume
    Chernozhukov, Victor
    Galichon, Alfred
    ANNALS OF STATISTICS, 2016, 44 (03): : 1165 - 1192
  • [4] Monotone support vector quantile regression
    Shim, Jooyong
    Seok, Kyungha
    Hwang, Changha
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (10) : 5180 - 5193
  • [5] Twin support vector quantile regression
    Ye, Yafen
    Xu, Zhihu
    Zhang, Jinhua
    Chen, Weijie
    Shao, Yuanhai
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [6] Online learning for quantile regression and support vector regression
    Hu, Ting
    Xiang, Dao-Hong
    Zhou, Ding-Xuan
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (12) : 3107 - 3122
  • [7] Optimal subsampling for functional quantile regression
    Yan, Qian
    Li, Hanyu
    Niu, Chengmei
    STATISTICAL PAPERS, 2023, 64 (06) : 1943 - 1968
  • [8] Optimal Designs for Quantile Regression Models
    Dette, Holger
    Trampisch, Matthias
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (499) : 1140 - 1151
  • [9] Optimal subsampling for functional quantile regression
    Qian Yan
    Hanyu Li
    Chengmei Niu
    Statistical Papers, 2023, 64 : 1943 - 1968
  • [10] Composite support vector quantile regression estimation
    Shim, Jooyong
    Hwang, Changha
    Seok, Kyungha
    COMPUTATIONAL STATISTICS, 2014, 29 (06) : 1651 - 1665