The characterization of a class of quantum Markov semigroups and the associated operator-valued Dirichlet forms based on Hilbert W*-module

被引:0
作者
Lun Chuan Zhang
Mao Zheng Guo
机构
[1] Renmin University of China,School of Information Science
[2] Peking University,School of Mathematical Science
来源
Acta Mathematica Sinica, English Series | 2013年 / 29卷
关键词
Hilbert ; *-module; quantum Markov semigroup; operator-valued Dirichlet forms; 47L05; 46C50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce the concept of operator-valued quadratic form based on Hilbert W*-module \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l_2 \bar \otimes A$\end{document}, and give a one to one correspondence between the set of positive self-adjoint regular module operators on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l_2 \bar \otimes A$\end{document} and the set of regular quadratic forms, where A is a finite and σ-finite von Neumann algebra. Furthermore, we obtain that a strict continuous symmetric regular module operator semigroup \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{ T_t \} _{t \in \mathbb{R}^ + } \subset L(l_2 \bar \otimes A)$\end{document} is Markovian if and only if the associated A-valued quadratic form is a Dirichlet form, where L(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l_2 \bar \otimes A$\end{document}) is the von Neumann algebra of all adjointable module maps on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l_2 \bar \otimes A$\end{document}.
引用
收藏
页码:857 / 866
页数:9
相关论文
共 25 条
  • [1] Beurling A.(1958)Espaces de Dirichlet I: le cas elementaire Acta Math. 99 203-224
  • [2] Deny J.(1959)Dirichlet spaces Proc. Natl. Acad. Sci. 45 208-215
  • [3] Beurling A.(1958)Hypercontractivity and logarithmic Sobolev inequalities for the Clifford Dirichlet forms Duck Math. J. 42 383-396
  • [4] Deny J.(1977)Dirichlet forms and Markovian semigroups on Comm. Math. Phys. 56 173-187
  • [5] Gross L.(1989)*-algebras J. Funct. Anal. 85 264-286
  • [6] Albeverio S.(1992)Markov semigroups on Math. Z. 210 379-411
  • [7] Hoegh-Krohn R.(1993)*-bundles C. R. Acad. Sci. Paris. Ser. I 317 1053-1057
  • [8] Davies E. B.(1996)Non-commutative symmetric Markov semigroups J. Funct. Anal. 135 50-75
  • [9] Rothaus O. S.(1997)Beurling Deny conditions for KMS-symmetric dynamical semigroups J. Funct. Anal. 147 259-300
  • [10] Davies E. B.(2003)Non-symmetric Dirichlet forms on semifinite von Neumann algebras J. Funct. Anal. 201 78-120