On the Moment Problem in the Spaces of Ultradifferentiable Functions of Mean Type

被引:0
作者
D. A. Polyakova
机构
[1] Southern Federal University,
[2] Southern Mathematical Institute of Vladikavkaz Scientific Center of the Russian Academy of Sciences,undefined
来源
Siberian Mathematical Journal | 2022年 / 63卷
关键词
ultradifferentiable function; moment problem; Borel map; 517.518;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a version of the classical moment problem in the Beurling and Roumieu spaces of ultradifferentiable functions of mean type on the real axis. We obtain the necessary and sufficient conditions for the weights \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \omega $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \sigma $\end{document} under which, for each number sequence in the space generated by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \sigma $\end{document}, there is an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \omega $\end{document}-ultradifferentiable function whose derivatives at zero coincide with the elements of the sequence.
引用
收藏
页码:336 / 347
页数:11
相关论文
共 23 条
[1]  
Carleson L(1961)On universal moment problems Math. Scand. 9 197-206
[2]  
Mityagin BS(1961)An infinitely differentiable function with the values of its derivatives given at a point Dokl. Akad. Nauk SSSR 138 289-292
[3]  
Dzhanashiya GA(1962)The Carleman problem in the Jeffrey class of functions Dokl. Akad. Nauk SSSR 145 259-262
[4]  
Bronshtein MD(1986)Continuation of functions in nonquasianalytic Carleman classes Izv. Vyssh. Uchebn. Zaved. Mat. 12 10-12
[5]  
Borel E(1895)Sur quelques points de la theorie des fonctions Ann. Ecole Norm. Sup. 3 9-55
[6]  
Björck G(1966)Linear partial differential operators and generalized distributions Ark. Mat. 6 351-407
[7]  
Meise R(1988)Whitney’s extension theorem for ultradifferentiable functions of Beurling type Ark. Mat. 26 265-287
[8]  
Taylor BA(1989)Whitney’s extension theorem for ultradifferentiable functions of Roumieu type Proc. Roy. Irish Acad. Sect. A 89 53-66
[9]  
Bonet J(1992)On the range of the Borel map for classes of non-quasianalytic functions North-Holland Math. Stud. 170 97-111
[10]  
Meise R(2003)On Borel’s theorem for spaces of ultradifferentiable functions of mean type Result. Math. 44 195-213