共 50 条
- [31] (1+λu2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\lambda u^2)$$\end{document}-constacyclic codes of arbitrary length over Fpm[u]/⟨u3⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{p^m}[u]/\langle u^3\rangle $$\end{document} Journal of Applied Mathematics and Computing, 2019, 59 (1-2) : 343 - 359
- [32] Several families of q-ary cyclic codes with length qm-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^m-1$$\end{document} Cryptography and Communications, 2024, 16 (6) : 1357 - 1381
- [33] On quantum and LCD Codes Over The Ring Fq+vFq+v2Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_q+vF_q+v^2F_q$$\end{document} Quantum Information Processing, 21 (9)
- [34] Repeated-Root Constacyclic Codes of Length kℓps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ell p^s$$\end{document} Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 (2) : 2009 - 2027
- [35] Constructing self-dual cyclic codes over Z9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{9}$$\end{document} of length 3n Journal of Applied Mathematics and Computing, 2019, 59 (1-2) : 465 - 488
- [36] Self-orthogonal codes with dual distance three and quantum codes with distance three over F5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb F _5$$\end{document} Quantum Information Processing, 2013, 12 : 3617 - 3623
- [37] Construction and enumeration for self-dual cyclic codes over Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_4$$\end{document} of oddly even length Designs, Codes and Cryptography, 2019, 87 (10) : 2419 - 2446
- [38] Optimal p-ary codes from one-weight and two-weight codes over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}_p + v\mathbb{F}_p^* $\end{document} Journal of Systems Science and Complexity, 2015, 28 (3) : 679 - 690
- [39] Several classes of linear codes with a few weights from defining sets over Fp+uFp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_p+u\mathbb {F}_p$$\end{document} Designs, Codes and Cryptography, 2019, 87 (1) : 15 - 29
- [40] Self-dual cyclic codes over Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_4$$\end{document} of length 4n Applicable Algebra in Engineering, Communication and Computing, 2022, 33 (1) : 21 - 51