共 50 条
- [21] An explicit expression for all distinct self-dual cyclic codes of length pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^k$$\end{document} over Galois ring GR(p2,m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{GR}(p^2,m)$$\end{document} Applicable Algebra in Engineering, Communication and Computing, 2023, 34 (3) : 489 - 520
- [22] The projective general linear group PGL(2,2m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {PGL}}(2,2^m)$$\end{document} and linear codes of length 2m+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^m+1$$\end{document} Designs, Codes and Cryptography, 2021, 89 (7) : 1713 - 1734
- [23] Concatenated structure of cyclic codes over Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_4$$\end{document} of length 4n Applicable Algebra in Engineering, Communication and Computing, 2016, 27 (4) : 279 - 302
- [24] The linearity of Carlet’s Gray image of linear codes over Z8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{8}$$\end{document} Designs, Codes and Cryptography, 2022, 90 : 2361 - 2373
- [25] Good p-ary quasic-cyclic codes from cyclic codes over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}_p + v\mathbb{F}_p$$\end{document} Journal of Systems Science and Complexity, 2012, 25 (2) : 375 - 384
- [26] Complete classification of (δ+αu2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\delta +\alpha u^2)$$\end{document}-constacyclic codes over F3m[u]/⟨u4⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{3^m}[u]/\langle u^4\rangle $$\end{document} of length 3n Applicable Algebra in Engineering, Communication and Computing, 2018, 29 (1) : 13 - 39
- [27] ACD codes and cyclic codes over Z2Rk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_2{\mathcal {R}}_k$$\end{document}ACD codes and cyclic codes over Z2Rk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_2{\mathcal {R}}_k$$\end{document}A. Yadav et al. Computational and Applied Mathematics, 2025, 44 (1)
- [28] A method for constructing self-dual codes over Z2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{2^m}$$\end{document} Designs, Codes and Cryptography, 2015, 75 (2) : 253 - 262
- [29] Optimal quaternary (r,δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r,\delta )$$\end{document}-locally recoverable codes: their structures and complete classification Designs, Codes and Cryptography, 2023, 91 (4) : 1495 - 1526
- [30] On Z2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{2^s}$$\end{document}-linear Hadamard codes: kernel and partial classification Designs, Codes and Cryptography, 2019, 87 (2-3) : 417 - 435